UPDATE ON INVESTMENTS IN LARGE TEN-T PROJECTS

ANNEX
CASE STUDIES
UPDATE ON INVESTMENTS IN LARGE TEN-T PROJECTS

ANNEX

CASE STUDIES

Abstract

This study updates the TEN-T investment study completed in early 2013 and adds five new case studies to the analysis, three of which deal with mega projects that are still in the planning or early implementation phase: Lyon-Turin, Iron-Rhine and S21/Stuttgart-Ulm. Findings confirm that not all stakeholders have learned past lessons on successfully developing projects. There is a particular need for early and transparent public participation and a clear project definition prior to the project decision. New findings suggest that measuring wider economic benefits and European added value are necessary to justify the socio-economic benefits of multibillion euro cross-border projects.
CONTENTS

LIST OF ABBREVIATIONS 7

LIST OF TABLES 11

LIST OF FIGURES 12

ANNEX 1. BRENNER BASE TUNNEL (BBT) 15
 1.1. Methodology and comments on the CBA and project selection 16
 1.2. Methodology and comments on the environmental analysis 17
 1.3. Characteristics of the transport demand scenario and its economic drivers 18
 1.4. Investment cost and structure of financing 19
 1.5. Cost developments over the life-cycle of the project 20
 1.6. Developments since the last study 20
 1.7. Conclusions 22
 Appendix 1: Chronology 23
 Appendix 2: References 24

ANNEX 2. BETUWE LINE FOR RAIL FREIGHT 25
 2.1. Methodology and comments on the CBA and project selection 27
 2.2. Methodology and comments on the environmental analysis 28
 2.3. Characteristic of the transport demand scenario and its economic drivers 28
 2.4. Investment cost and structure of financing 29
 2.5. Development since the last study 31
 2.6. Conclusions to be drawn 31
 2.7. References 32

ANNEX 3. RAIL BALTIC(A) 33
 3.1. The new Rail Baltic project 34
 3.2. Conclusions regarding the Rail Baltic project (Updated version) 42
 3.3. Rail Baltic(a) and the feasibility studies 43
 3.4. Methodology and comments on the CBA and project selection 45
 3.5. Methodology and comments on the environmental analysis 46
 3.6. Characteristics of the transport demand scenario and its economic drivers 47
 3.7. Investment cost and structure of financing 47
 3.8. Cost developments over the life-cycle of the project 48
 3.9. Methodology and comments on the CBA and project selection 49
3.10. Methodology and comments on the environmental analysis 51
3.11. Characteristics of the transport demand scenario and its economic drivers 51
3.12. Investment cost and structure of financing 51
3.13. Cost developments over the life-cycle of the project 52
3.14. References 53

ANNEX 4. IRON RHINE 55
4.1. Methodology and comments on the CBA and project selection 57
4.2. Methodology and comments on the environmental analysis 59
4.3. Characteristic of the transport demand scenario and its economic drivers 59
4.4. Investment cost and structure of financing 60
4.5. Cost developments over the life-cycle of the project 61
4.6. Conclusions to be drawn 61
4.7. References 62

ANNEX 5. HIGH-SPEED RAIL PROJECT STUTTGART-ULM 63
5.1. Project definitions and project summaries 63
5.2. Summary of impact assessment and evaluation 67
Appendix 1: Background information on the railway project Stuttgart - Ulm 72
Appendix 2: References 94

ANNEX 6. FEHMARN BELT FIXED LINK 95
6.1. Methodology and comments on the CBA and project selection 98
6.2. Methodology and comments on the environmental analysis 100
6.3. Characteristics of the transport demand scenario and its economic drivers 102
6.4. Investment cost and structure of financing 103
6.5. Cost developments over the life-cycle of the project 104
6.6. Development since the last study 105
6.7. Related issues 105
6.8. Conclusions to be drawn 107
Appendix 1: Chronology 109
Appendix 2: References 111

ANNEX 7. TWO TUNNELS ON SE40 EXPRESSWAY SEVILLA-HUELVA 113
7.1. Methodology and comments on the CBA and project selection 114
7.2. Methodology and comments on the environmental analysis 115
7.3. Characteristics of the transport demand scenario and its economic drivers 116
7.4. Investment cost and structure of financing 116
7.5. Developments since the last study 116
7.6. Conclusions to be drawn
7.7. References

ANNEX 8. A11 MOTORWAY FROM BERLIN TO POLISH BORDER
8.1. Methodology and comments on the CBA and project selection
8.2. Methodology and comments on the environmental analysis
8.3. Characteristic of the transport demand scenario and its economic drivers
8.4. Investment cost and structure of financing
8.5. Cost developments over the life-cycle of the project
8.6. Development since the last study
8.7. References

ANNEX 9. LYON-TURIN BASE TUNNEL
9.1. Methodology and comments on the CBA and project selection
9.2. Methodology and comments on the environmental analysis
9.3. Characteristics of the transport demand scenario and its economic drivers
9.4. Investment cost and structure of financing
9.5. Conclusions to be drawn
9.6. References

ANNEX 10. GOTTHARD BASE TUNNEL
10.1. Methodology and comments on the CBA and project selection
10.2. Methodology and comments on the environmental analysis
10.3. Characteristic of the transport demand scenario and its economic drivers
10.4. Investment cost and structure of financing
10.5. Cost developments over the life-cycle of the project
10.6. Conclusions to be drawn
10.7. References

ANNEX 11. LÖTSCHBERG-SIMPLON TUNNEL
11.1. Methodology and comments on the CBA and project selection
11.2. Methodology and comments on the environmental analysis
11.3. Characteristic of the transport demand scenario and its economic drivers
11.4. Investment cost and structure of financing
11.5. Cost developments over the life-cycle of the project
11.6. Conclusions to be drawn
11.7. References
ANNEX 12. SEINE-SCHELDT CANAL PROJECT 167

12.1. FRANCE 172

12.2. BELGIUM: FLEMISH SECTOR 177

Appendix 1: Chronology 189
Appendix 2: Selected bibliography 191
Appendix 3: Comments on the first study 192
Appendix 4: References 201
LIST OF ABBREVIATIONS

AECOM Consulting Company, Headquarters Los Angeles
ASTRA Assessment of Transport Strategies, System Dynamics Model,
BBT Brenner Base Tunnel
BBT SE Brenner Base Tunnel Company
BCR Benefit-cost ratio
BIM Building Information Modelling (Implementation Tool)
BVWP Bundesverkehrswegeplanung – Federal cross-modal infrastructure planning process in Germany
CBA Cost-benefit analysis
CEF Connecting Europe Facility
CF Cohesion Fund
CIA Climate Impact Assessment
CHF Swiss francs
CoR Committee of the Regions
COWI Consulting Company, Headquarters Copenhagen
CSF Common Strategic Framework
CSIL Centre for Industrial Studies, Research Institute, Milan
CSNE Canal Seine Nord Europe
DEGES Planning Company, Berlin
DG MOVE Directorate-General Mobility and Transport
DG REGIO Directorate-General Regional and Urban Policy
ECA European Court of Auditors
EEIG European Economic Interest Grouping

EERP European Economic Recovery Plan

EFA European Free Alliance (group in EP together with the Greens)

EIA Environmental Impact Assessment

EIB European Investment Bank

EIF European Investment Fund

EIRR Economic internal rate of return

ERDF European Regional Development Fund

ERTMS European Rail Traffic Management System

EVA-TREN Improved decision-aid methods and tools to support evaluation of investment for transport and energy networks in Europe (research project)

FIRR Financial internal rate of return

FS Ferrovie dello Stato Italiane (Italian railway company)

GDP Gross domestic product

GHG Greenhouse Gas Emissions

GVA Gross value added

HSR High-speed rail

IASON Integrated Appraisal of Spatial Economic and Network Effects of Transport Investments and Policies (research project)

IHS Institut für höhere Studien, Vienna

INEA Innovation and Networks Executive Agency

INFRAS Consulting Company, Zurich, Bern

IO Input Output

IRR Internal Rate of Return
ITS Supporting Telecommunication Systems

IWW Institut für Wirtschaftspolitik und Wirtschaftsforschung, Karlsruhe Institute of Technology

JV Joint Venture

LTF Lyon Turin Ferroviaire

MAP Multi-annual programme

MoS Motorways of the Sea

NEAT Neue Eisenbahn-Alpen-Transversale

NGO Non-governmental organisation

NPV Net present value

NRLA New Railway Link through the Alps

NUTS Nomenclature of Territorial Units for Statistics (Eurostat)

OD Origin-Destination matrix or flows

PP Priority projects of TEN-T

PPP Public-private partnership

SCGE Spatial Computed General Equilibrium Models

SDR Social Rate of Discount

SDM System Dynamics Modelling

SEA Strategic Environmental Assessment

SEITT State Company for Land Transport Infrastructure

SNCF Société Nationale des Chemins de Fer

SrF Institute of City and Regional Planning of the Vienna Technical University
TAV Treno Alta Velocita

TEN Trans-European Networks (communication, energy, transport)

TEN-STAC Scenarios, Traffic Forecasts and Analysis of Corridors on the Trans-European Network (research and consultancy project)

TEN-T Trans-European Transport Networks

TEN-T EA TEN-T Executive Agency (has now become INEA)

TINA Transport Infrastructure Needs Assessment

UIC International Union of Railways

VDE Verkehrsprojekte Deutsche Einheit

VOT Value of time
LIST OF TABLES

Table C1-1
Project summary of Brenner Base Tunnel (BBT) 15

Table C1-2
Brenner traffic forecast 2004-2030 under six scenarios 18

Table C2-1
Project summary Betuwe Line for rail freight 25

Table C2-2
Transport demand scenario underpinning the Betuwe Line decision 29

Table C2-3
Cost development of Betuwe line 30

Table C3-1
Project summary of Rail Baltic: AECOM study (2011) 44

Table C3-2
Project summary of Rail Baltica: COWI Feasibility Study (2007) 48

Table C4-1
Project summary Iron Rhine 55

Table C4-2
Estimated investment costs of the Iron Rhine upgrade project 60

Table C4-3
Investments in the Belgian section of the Iron Rhine upgrade project 61

Table C5-1
Project summary federal railway link Stuttgart-Ulm-Augsburg 64

Table C5-2
Project summary Railway Project Stuttgart-Ulm 66

Table C5-3
Travel time comparisons for selected OD relationships 81

Table C5-4
Investment cost allocation for rail project Stuttgart-Ulm 83

Table C6-1
Project summary Fehmarn Belt Fixed Link 95

Table C6-2
Traffic forecast for road traffic across the Fehmarn Belt Fixed Link in 2018 103

Table C6-3
Planning stages of Fehmarn Belt Fixed Link 103

Table C7-1
Project summary two tunnels of SE40 Expressway Sevilla-Huelva 113
Table 7-2
Project status according to the SEITT

Table C8-1
Project summary of A11 motorway from Berlin to the Polish border

Table C9-1
Project summary Lyon-Turin base tunnel

Table C10-1
Project summary Gotthard Base Tunnel

Table C11-1
Project summary Lötschberg Base Tunnel

Table C12-1
Project summary Seine-Scheldt waterway

Table C12-2
Traffic forecast on the section Vernon-Gaillons

Table C12-3
Breakdown of costs in the present phase 2007-2013

Table C12-4
Total cost estimation for the Flemish project component

LIST OF FIGURES

Figure C1-1
Location of the Brenner Base Tunnel Project

Figure C1-2
Status of works

Figure C3-1
Rail Baltic(a) Growth Corridor

Figure C3-2
Exports/Imports of countries involved in the RAIL BALTIC project

Figure C3-3
The Rail Baltic Growth Corridor - Russia

Figure C3-4
Picture of the long-term Rail Baltica / Rail Baltic Growth Corridor - Russia

Figure C3-5
Rail Baltic as defined by the AECOM study

Figure C4-1
Iron Rhine
Figure C10-5
Origin of financial resources and their application 153

Figure C10-6
NEAT price increase index per year 154

Figure C10-7
Budget modifications (Gotthard without Ceneri) 155

Figure C11-1
Transport demand for the NEAT in the long-term 160

Figure C11-2
Use of rail freight capacity at the Lötschberg-Simplon axe 162

Figure C11-3
Origin of revenues in the NEAT project and use of financial resources 163

Figure C11-4
NEAT’s price increase rate per year 164

Figure C12-1
Location of the Seine-Scheldt waterway network 169

Figure C12-2
Overview over the Seine-Scheldt inland waterway network 171

Figure C12-3
Belgium Part of the Project 177

Figure C12-4
Impacts of CSNE on transport segments 184
ANNEX 1. BRENNER BASE TUNNEL (BBT)

Table C1-1: Project summary of Brenner Base Tunnel (BBT)

<table>
<thead>
<tr>
<th>Aspect</th>
<th>Description</th>
<th>Aspect</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Title</td>
<td>Brenner Base Tunnel</td>
<td>TEN-T code</td>
<td>2007-EU-01180-P</td>
</tr>
<tr>
<td>Countries / area</td>
<td>Austria, Italy</td>
<td>Start date</td>
<td>April 2011</td>
</tr>
<tr>
<td>Mode(s)</td>
<td>Rail</td>
<td>End date</td>
<td>December 2013 (present phase); 2022 (total project)</td>
</tr>
<tr>
<td>Managing authority</td>
<td>Brenner Basistunnel BBT SE - Galleria di Base del Brennero</td>
<td>Duration</td>
<td>11 years</td>
</tr>
<tr>
<td>Included in TEN-T</td>
<td>Part of Essen projects (1994)</td>
<td>Delay (mth)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Also part of priority projects (2004)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| **Investment cost (m€)** | 2,195 (2007-2013)
7,460 as of 1 January 2010 (total project with tunnel and access links)
8,062 including a total risk reserve of 1,144 | **Length (km)** | 64 |
| **EC funding TEN-T (m€)** | From 2007-2013 budget, extended to 2015:
Studies: 193 + 85
Works: originally 593, reduced after mid-term review to 151 and increased in 2013 to 168 | **EC share** | Studies (inc. exploration and access tunnels): 50%;
Works: 30% |
| **EC funding Cohesion (m€)**| d.n.a. | **EC share** | d.n.a. |
| **Funding agent 1** | National budget – Austria | **Value (m€)** | 801.2 (2007-2013) |
| **Funding agent 2** | National budget – Italy | | |
| | | **Public y/n** | Y |
| **Transport scenario** | Traffic forecast by ProgTrans | **Dated from** | 2007 |
| **Externalities covered** | Environmental damage costs produced by air pollution, climate change, electromagnetic fields, road accident costs, noise costs, congestion costs | **External cost savings (m€)** | 2030: 97.5
2050: 190.3 |
The Brenner Base Tunnel is the centrepiece of Priority Project 1, the railway axis Berlin-Verona/Milano-Bologna-Napoli-Messina-Palermo. This project covers the construction of two low-gradient parallel tunnels mainly envisaged as providing transport of heavy goods across the Alps. It will run for 55 km from Innsbruck (in Austria) to Franzensfeste/Forlizza (in Italy). Adding to the existing Innsbruck railway bypass, the entire tunnel through the Alps will be 64 km long becoming the longest underground rail link in the world. The cross-border tunnel across the Alps will remove a major bottleneck in an environmentally sensitive area, shifting heavy traffic from the road to a high-quality rail service.¹

1.1. Methodology and comments on the CBA and project selection

A first Cost-Benefit Analysis (CBA) of the Brenner Base Tunnel project was conducted in 2004 by external consultants Ernst & Young (report not available), followed by an update in 2007 (report publicly available), taking on board new traffic forecasts by ProgTrans (also publicly available). The methodology of the CBA followed the guidelines set up by the European Commission and, specifically for railway projects, by the European Investment Bank (RAILPAG). The CBA covered 68 years incorporating the planning and construction

period as well as the concession period (2021-2070). The procedure quantifies the increase of general welfare in terms of “social surplus”, defined as the sum of

- “consumer surplus”
- “producer surplus”, and
- savings of external costs

External costs included:

- Environmental costs (e.g. damage produced by air pollution, climate change, electromagnetic fields, etc)
- Road accident costs
- Noise costs
- Traffic congestion costs

The CBA resulted in an economic internal rate of return (EIRR) for the project of 4.73%, with a total financial investment cost of EUR 6 billion, converted to an economic investment cost of EUR 3.44 billion. In a sensitivity test assuming 25% higher construction costs the EIRR drops to 3.91%.

While the methodology used for the CBA can be considered as being state-of-the-art, the analysis was conducted prior to the current financial and economic crisis and thus assumes a brighter economic outlook than that of today.

The project was not selected on the basis of a CBA ranking in either of the two countries. Its inclusion in the TEN-T priority project n°1 was, however, justified on the basis of its importance for strengthening the Berlin-Verona transport axis.

1.2. Methodology and comments on the environmental analysis

Various environmental impact assessments (EIAs) were carried out as part of the framework of the BBT Project. These included the following elements:

- noise, vibration, air and public health
- geology, surface water and groundwater with an open design and in the construction areas
- landscape
- ecosystems, vegetation, agriculture and fauna

The methods used to conduct the EIAs were all in line with the existing EU legislation.

3 Congestion costs are often mistaken as external costs which they are not in a strict sense.
1.3. Characteristics of the transport demand scenario and its economic drivers

In 2005 the Swiss transport consultancy ProgTrans AG developed and updated the traffic forecast concerning the Brenner axis. This was updated in 2007 and contained a traffic forecast which was developed with a multimodal transport network model covering the transalpine traffic-related origin-destination relationships of all EU Member States plus Switzerland and Norway. Six traffic forecast scenarios were defined for freight transport as shown in Table C1-2:

Table C1-2: Brenner traffic forecast 2004-2030 under six scenarios (million tonnes)

<table>
<thead>
<tr>
<th>Year</th>
<th>Basis</th>
<th>Trend</th>
<th>Minimum</th>
<th>Distortion</th>
<th>Worst case</th>
<th>Consensus</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Road</td>
<td>Rail</td>
<td>Road</td>
<td>Rail</td>
<td>Road</td>
<td>Rail</td>
</tr>
<tr>
<td>2004</td>
<td>31.5</td>
<td>10.7</td>
<td>31.5</td>
<td>10.7</td>
<td>31.5</td>
<td>10.7</td>
</tr>
<tr>
<td>2015</td>
<td>43.9</td>
<td>14.9</td>
<td>38.8</td>
<td>14.9</td>
<td>38.8</td>
<td>19.8</td>
</tr>
<tr>
<td>2020</td>
<td>47.3</td>
<td>20.8</td>
<td>41.8</td>
<td>21.6</td>
<td>41.8</td>
<td>27.6</td>
</tr>
<tr>
<td>2025</td>
<td>50.6</td>
<td>28.1</td>
<td>44.7</td>
<td>30.2</td>
<td>44.9</td>
<td>37.6</td>
</tr>
<tr>
<td>2030</td>
<td>54.2</td>
<td>31.8</td>
<td>47.8</td>
<td>33.2</td>
<td>47.2</td>
<td>49.1</td>
</tr>
</tbody>
</table>

The initial traffic forecast was based on appropriate socio-economic conditions and policy drivers at sufficient geographical detail:

- Population (inhabitants, age structure, driving licence ownership)
- Economy (GDP, domestic demand, foreign trade (exports, imports), private consumption)
- Transport policy (market regulation, prices and taxes, infrastructure and supply-side policy)
- Logistics (shippers’ requirements, organisation)
- Mobility behaviour.

The update and expansion of traffic forecasts for the Brenner Base Tunnel estimated transport demand in the form of origin-destination matrices at NUTS 3 level (Alpine region), NUTS 2 level (Austria, Italy, Germany, France and Switzerland) and for the rest of Europe at NUTS 0 level. This was based on current and expected socio-economic developments of national economies and individual sectors (see Table C1-2). The predicted demand matrices were assigned to the forecast road and rail networks.

A (so far unpublished) update of the traffic forecast on the Brenner axis was also prepared in October 2012, taking into account the most recent, crisis-reflecting, long-term socio-economic forecasts.
1.4. **Investment cost and structure of financing**

The European Joint-Stock Company “Brenner Basistunnel BBT SE” was founded on 16th December 2004 with a shareholders’ agreement between Austria, Tyrol and RFI (Rete Ferroviaria Italiana) as the successor company of the EEIG Brenner Base Tunnel. The main task for the BBT SE lies in the planning and construction of the tunnel and the development of the financing model, together with the details of the granting of the operational license. The State Treaty signed in Salzburg on the 30th April 2004 laid down the legal framework. Originally, 50% of the company shares were owned by RFI and 25% each by the Austrian Republic and the Land Tyrol. In April 2011 the share distribution was as follows: Austria: 50% ÖBB Infrastructure; Italy: 50% TFB (of which RFI: 84.98%, Autonomous Province of Bolzano; 6.22% Autonomous Province of Trento: 6.22% and Province of Verona: 2.58%.

Since the financial engineering has not yet been finalised we will more closely examine recent cost updates. The most recent of these, in 2010, put total financial investment costs of the global Brenner Base Tunnel project at EUR 7.46 billion (in 1st January 2010 prices) with the following breakdown:

- Basic structure 65%
- Outfitting and Equipment 15%
- Management and land acquisition 12.5%
- Provision for risks 7.5%

Including a total risk allocation of EUR 1.144 billion, total investment costs were tabled at EUR 8.062 billion. This risk allocation reflects the specific requirements of the Austrian ÖGG directive.7

The basic structure of financing this large-scale project is quite simple: by following the ÖBB internal manual, ÖGG directives and the European legislation, the European Commission formally guaranteed a very high level of support for TEN-T priority project n°1, awarding a grant of up to 20% of works. Austria and Italy are required to share equally the remaining costs. However, Austria and Italy hope that the EU will shoulder one third of the entire costs for the construction of the Brenner Base Tunnel.8

We cannot be very precise about the financial return on investment for the whole Brenner Base Tunnel project because this does not appear in the documents available for our analysis. However, as the funding is entirely public, the economic internal rate of return is the most appropriate indicator for the viability of the project.

7 Österreichische Gesellschaft für Geomechanik (ÖGG): Richtlinie Kostenermittlung für Projekte der Verkehrsinfrastruktur unter Berücksichtigung relevanter Projektrisiken.
1.5. Cost developments over the life-cycle of the project

During the implementation phase the following finance planning was based on the report by the European Coordinator Pat Cox, in charge of the Brenner project.

The financial framework for the period 2007-2013 of the TEN-T budget focused on the cross-border sections and bottlenecks of the priority project n°1. In total EUR 960 million have been committed to the project, of which EUR 786 million are for the Brenner Base Tunnel. The financial commitment was based on decisions made by the European Commission in 2008.

In the context of Priority Project No. 1 five decisions were made by the European Commission of which two concerned the Brenner case. The decisions covered the studies and the works on the tunnel and the associated finances. The European Commission supported the studies with EUR 193 million (for the period 2010-2013) i.e. a co-financing rate of 50%. It supported the works in the actual tunnel of roughly EUR 2.2 billion with a commitment of EUR 593 million, i.e. a co-financing rate of 27% (C(2008)7723, dated 5/12/2008)\(^9\).

These finances were confirmed once again in the most recent European Coordinators’ report of 2011. The studies on the Brenner Base Tunnel served to assess the risks, costs and duration of the construction of the tunnel and the EU contribution remains at EUR 193 million. Concerning the actual works on the Brenner Base Tunnel the amount of EUR 593 million has been reduced to EUR 151.4 million after the mid-term review revealed that the planned works could not in any way be implemented within the programming period. The investment required was reduced to EUR 560.7 million which corresponds to an EU contribution of EUR 151.4 million (C(2012)8560, dated 19 November 2011).

1.6. Developments since the last study

Construction progress was much lower than expected because of delays in the decision process. This resulted in the reduction of the TEN-T budget approved in 2008 from EUR 593 million to EUR 151 million after the mid-term review. Subsequently, by implementing the decision of 21\(^{st}\) August 2013, [C(2013 5399 final)\(^10\)] the Commission approved two TEN-T financing applications by BBT SE and two applications for studies for the Northern and Southern access lines to the Brenner. The two financing schemes for the Brenner Base Tunnel are:

1. Study programme of EUR 171.3 million with a 50% TEN-T financial support of EUR 85.65 million (2012-EU-01098-S). The Innovation and Networks Executive Agency (INEA) explains that “This project covers the excavation of the exploratory tunnels from several fronts. The studies will serve to assess the costs and duration of the construction, as well as to more accurately assess the risks of the overall project.”\(^11\)

The term “study” has in this case a wider sense than is usually understood by this term.

11 http://inea.ec.europa.eu/en/ten-t/ten-t_projects/ten_t_projects_by_country/multi_country/2012-eu-01098-s.htm
2. Works programme of EUR 558.9 million with a 3% TEN-T financial support of EUR 17.8 million (2012-EU-01099-P), increasing the total TEN-T financial support from 27 to 30% of works, i.e. from EUR 151 million to EUR 168 million, to be disbursed by 2015 (C(2013)9147, dated 9/15/2013).

In view of serious budgetary limitations in both Austria and Italy, progress is slower than planned. The actual status of works including access and exploration tunnels is shown in Figure C1-2 below. As of January 2014, the sectors marked in blue in the graph below have been built. These are essentially exploration and access tunnels of only 1.4 km of length.

Figure C1-2: Status of works

The only comment received in response to the first description and analysis of the Brenner Basis Tunnel one year ago was from the Greens/EFA in the European Parliament. Two points were specifically mentioned:

1. The Brenner project is too expensive: "one train every two minutes would have to run in order to amortise the investment";
2. Planning for the access routes in Germany and Italy has not even started.

Ad (1): We are not in a position to comment on the financial implications of the Brenner project as there is no detailed publicly available information either on up-to-date traffic forecasts or on costs and revenues.

Ad (2): The timely implementation of upgrading or, in part, newly constructing the Northern and Southern access routes, is of major concern to the parties, i.e. the Austrian, German and Italian governments as well as the EU Co-ordinator. Studies are planned with TEN-T support finance and are partially underway. Whether all works on the access routes can be completed within the 12 years until the planned opening of the Brenner Base Tunnel is largely a question of available funding.

12 We have submitted the Brenner appendix of our first report of January 2012 to BBT SE for comments but have received none.
1.7. Conclusions

Our conclusions are essentially the same as in our first report:

- The main activities at present are the construction of exploratory tunnels in a geologically difficult environment.
- The financial investment costs for the Brenner project have occasionally been reviewed and adjusted. The two most recent and major revisions took place in 2006 and 2010.
- Traffic forecasts were carried out and have been revised occasionally. They were last reviewed in autumn 2012 but this has not yet been released.
- A CBA was performed in 2004 and updated in 2007, before the financial and economic crisis. That of 2007 is the only one available and there is no publicly available financial analysis. Therefore, it is not possible to judge the impact of the economic crisis of recent years on the economic and financial viability of the project.
- Environmental studies followed EU regulations.
- All in all, assessment studies are in line with European legislation; a separate Climate Impact Assessment is not legally required and has not been undertaken so far.

Progress has been slow although the project was already on the list of the 14 “Essen” projects and heavyweight political co-ordinators Karel Van Miert and Pat Cox have followed the project over more than a decade. Institutional and financing problems are delaying the planning and exploration process. Under the new TEN-T concept, the Brenner corridor (Munich – Verona) is part of the Scandinavian – Mediterranean Core Network Corridor Nº5 (Helsinki/Finland – Valletta/Malta). Such strategic large-scale projects as the Fehmarn Belt Fixed Link and a bridge across the Straight of Messina, the latter being cancelled for the time being, also belong to this Corridor. At this point in time it remains to be seen how the implementation of the longest TEN-T core network corridor will be managed with an EU co-ordination team.
Appendix 1: Chronology

1971: The idea of a tunnel at the Brenner was revived. The International Union of Railways (UIC) commissioned a study on a new Brenner railway line with a base tunnel. By 1989 three feasibility studies had been drawn up which formed the basis for further planning of the Brenner Base Tunnel.

1994: The European Union included the Berlin-Naples corridor in the list of 14 priority projects. The European Council declared, during a meeting in Essen, that the Brenner Axis should become project no 1 on the list of TEN-T Priority Projects. The Priority Project Brenner Base Tunnel is hence one of the most important projects the European Council has adopted in the context of the Trans-European Transport Networks.

1999: The BBT EWIV (Brenner Basistunnel Europäische Wirtschaftliche Interessenvereinigung – European Economic Interest Grouping EEIG) with Brenner Eisenbahn GmbH (BEG), working in Austria, and the Italian railway company Ferrovie dello Stato was founded with the goal of developing the preliminary project (geological survey and definition of the route).

2001: The White Book of the European Commission identified TEN-Projects, with 14 priority projects, including the Brenner Base Tunnel. The European Commission formally guaranteed a very high level of support for priority project 1, assigning it 20% of the budget.

2003: Common declaration of the Austrian and Italian Ministers for Infrastructure and Transportation.

2004: Austria and Italy signed a State Treaty to build the Brenner Base Tunnel. In that same year, the organisation now known as BBT SE was established. This lead to Decision No. 884/2004/EG of the European Parliament and of the Council to modify Decision No. 1692/96/EG: the build-up of a trans-European transportation network priority Projects to be begun before 2010; TEN – Axis No.1: Berlin-Verona/Milan-Bologna-Naples-Messina-Palermo with the Brenner Base Tunnel.

2005: The exploratory tunnel phase began.

2007: Establishment of the Brenner Corridor Platform under the coordination of Karel Van Miert with BBT SE and including the appropriate Ministries of Germany, Austria, Italy, the regions of Bavaria, Tyrol, the provinces of Bolzano, Trentino and Verona and the three railway companies DB, ÖBB with BEG and RFI.

2008: Completion of the final project documentation and of the project documentation for the declaration of environmental compatibility. Submission of these documents to the authorities in Austria and Italy.

2010: The Inter-Ministerial Committee for Economic Planning (CIPE) approves financing for the Brenner Base Tunnel in Italy.

2011: TEN-T funds amounting to EUR 592.65 million, i.e. 27% approved by the EU, up to 2013. The hope is that the EU will shoulder one third of the entire costs for the construction of the Brenner Base Tunnel and that Austria and Italy will each absorb half of the rest.

Appendix 2: References

<table>
<thead>
<tr>
<th>Year</th>
<th>Type</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td>General</td>
<td>Österreichische Gesellschaft für Geomechanik (ÖGG): Richtlinie Kostenermittlung für Projekte der Verkehrsinfrastruktur unter Berücksichtigung relevanter Projektrisiken</td>
</tr>
</tbody>
</table>
ANNEX 2. BETUWE LINE FOR RAIL FREIGHT

Table C2-1: Project summary Betuwe Line for rail freight

<table>
<thead>
<tr>
<th>Aspect</th>
<th>Description</th>
<th>Aspect</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Title</td>
<td>Dedicated rail freight line to link Port of Rotterdam with the Dutch-German border</td>
<td>TEN-T code</td>
<td>PP 5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TENtec:</td>
<td>0500</td>
</tr>
<tr>
<td>Countries / area</td>
<td>The Netherlands (NL) plus cross-border section to Germany (NL-DE)</td>
<td>Start date</td>
<td>1998 (1997)</td>
</tr>
<tr>
<td>Mode(s)</td>
<td>Rail</td>
<td>End date</td>
<td>2008 (2007)</td>
</tr>
<tr>
<td>Managing authority</td>
<td>ProRail B.V. (The Netherlands) DB Projektbau GmbH (Germany)</td>
<td>Duration</td>
<td>10 years</td>
</tr>
<tr>
<td>Included in TEN-T</td>
<td>Essen projects in 1994, also PP5 in 2004</td>
<td>Delay (mth)</td>
<td>24-36</td>
</tr>
<tr>
<td>Investment cost (m€)</td>
<td>4 705</td>
<td>Length (km)</td>
<td>160 km</td>
</tr>
<tr>
<td>EC funding TEN-T (m€)</td>
<td>197</td>
<td>EC share</td>
<td>~ 4.2%</td>
</tr>
<tr>
<td>Funding 1</td>
<td>NL state budget</td>
<td>Value (m€)</td>
<td>4 404</td>
</tr>
<tr>
<td>Funding 2</td>
<td>NL regional budget</td>
<td>Value (m€)</td>
<td>8</td>
</tr>
<tr>
<td>Funding 3</td>
<td>Other sources</td>
<td>Value (m€)</td>
<td>97</td>
</tr>
<tr>
<td>Cost-benefit-analysis</td>
<td>Missing</td>
<td>CBA ratio</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Simplified estimations of payback period</td>
<td>Public y/n</td>
<td>Y</td>
</tr>
<tr>
<td>Transport scenario</td>
<td>Dutch rail operator</td>
<td>Dated from</td>
<td>1991</td>
</tr>
<tr>
<td>Externality covered</td>
<td>Missing</td>
<td>Ext. cost (m€)</td>
<td></td>
</tr>
<tr>
<td>EIA</td>
<td>Air pollution (further aspects influenced route design)</td>
<td>Public y/n</td>
<td>(Y)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ex-post:</td>
<td>Y</td>
</tr>
<tr>
<td>CIA</td>
<td>Missing</td>
<td>Payback</td>
<td>10-20 yr</td>
</tr>
<tr>
<td>Financial analysis</td>
<td>Knight Wendling 1992 CPB 1993</td>
<td>FIRR</td>
<td></td>
</tr>
<tr>
<td>Ex-post evaluation</td>
<td>Ex-post EIA available since 2013 Ex-post socio-economic analysis lacking</td>
<td>Cost overrun (m€)</td>
<td>984 (27%)</td>
</tr>
</tbody>
</table>

Source: budget figures from TENtec Information System 2012, m€ = million Euro, own analysis.
The BETUWE line is a newly constructed railway line dedicated to rail freight. It connects the Dutch Port of Rotterdam with the Dutch-German border with a new 160 km long double track railway. The border crossing is located between Zevenaar (Netherlands) and Emmerich (Germany). A full exploitation of the rail freight potential requires that the connections on the German side from Emmerich to Oberhausen are also developed.

The BETUWE line itself, being Priority Project 5 (PP5) of the TEN-T as defined in 2004, also constitutes an element of the larger Priority Project 24 (PP24) running from Rotterdam to Genoa (Genoa-Basel-Duisburg-Rotterdam) with branches from/to Lyon and Antwerp. In addition, the line is an element of European rail freight corridor A, Rotterdam-Genoa, to be equipped with the European Rail Traffic Management System (ERTMS).

The initial impulse to build the Betuwe line came from a master plan for the future of the Port of Rotterdam in 1985, which, instead of closing down the existing parts of the line, suggested its renewal as a dedicated rail freight line (see e.g. Pestmann 2001, Vrijland 2004). In 1990 the Dutch government recognised the strategic importance of a modernisation of the Betuwe line. The estimate for the cost of its construction was EUR 1.5 billion, expecting a demand of 50 million tons for the year 2010. After an initial approval of the project by the government, development was halted by a change of the governing parties. However, the so-called Hermans Commission recommended a continuation of the project (Hermans et al. 1995), such that in 1995 the new government took the decision to implement the project at a cost of EUR 3.67 billion, of which 20% would be sourced from private investors. In 1996 the track plan was fixed and construction of the new sections of the Betuwe line started in 1998. Nevertheless, in 2000 the Netherlands Court of Audit stated “that a sound and comprehensive cost/benefit analysis of the Betuwe Route is missing.” (Vrijland 2004, p.4). There has been intense public debate in The Netherlands about the usefulness and the cost of the Betuwe line, at least since the beginning of construction. The whole process was debated in parliament using a 455 pages report describing in accurate detail how the decision on the Betuwe line was actually taken (TCI 2004).
In 2007 the Betuwe line was completed and started operation. The build included five tunnels with a length of 18 km, 190 animal passages, and 130 bridges. 95 km of the 160 km track were built in parallel to the A15 motorway to mitigate environmental and health impacts. The Betuwe Line is designed for a capacity of 10 trains per hour in each direction. Between 2008 and 2011 KeyRail, the operator of the Betuwe line, reports that demand approximately quadrupled to 500 trains per week and the long-term target is to run 900 trains per week (Keyrail 2011).

Even though core infrastructure of the Betuwe line was completed in 2007 further EU funding has been provided subsequently to both The Netherlands and Germany. Funding was required to extend the line to Maasvlakte West, to retrofit locomotives with ERTMS, to install ERTMS and to plan for a third track in the border crossing sections, so that the total cost of the project is set to increase.

Despite there being joint Dutch-German agreement in 1992 over the construction of the Betuwe Line (Agreement from Warnemünde) there has been limited progress from the German side on the 72 km of track connecting Emmerich at the border with Oberhausen. In 2002 the Federal State and the State of North-Rhine Westfalia reached an agreement that the Federal State would pay for 64% of the infrastructure cost (which was at that time estimated to be EUR 895 million). The project was divided into 12 sections, for which, as at the end of 2012, the first sections were undergoing the process of plan approval procedure, including public participation. The proposed plans foresee, for example, 47 km of new track, 74 km of noise protection walls and the replacement of 55 level crossings with 38 new/adapted bridges (DB Projektbau 2011, 2012). By mid 2013 the cost of these investments were estimated to be EUR 1.5 billion and an agreement was achieved that the German Federal State would cover EUR 746 million, with the Lander of Northrhine-Westfalia bearing EUR 450 million. DB AG would cover a large share of the remaining investment (Tenta 2013). By the end of 2013, for all 12 sections, the plan approval process had been started. It is expected that construction will start in 2015 with the completion of the project by 2022, some 30 years after the Agreement from Warnemünde.

2.1. **Methodology and comments on the CBA and project selection**

The first assessment of the benefit and cost of the Betuwe line in 1992 concluded that the investment of EUR 2.36 million would be paid back by the year 2000 and if the line had not been built until 2010 the state would face a loss of potential tax revenues of EUR 5.4 billion (Koetse/Rouwendal 2010 quoting Knight Wendling 1992). This result was obtained using a transport forecast consisting of two scenarios, a baseline and an ambitious scenario that assumed the Betuwe line was part of the ambitious scenario without actually simulating the impact of the line. The increase of freight rail demand was taken as given in this “CBA”. The TCI report notes that the method of estimation of the different forecasts of 40 million t for the baseline scenario and 65 million t for the ambitious scenario remains unclear (TCI 2004, p. 43). Surprisingly the first assessments either didn’t take into account the environmental benefits of a rail freight line, or concluded that such environmental benefits would be so limited they could be ignored (Koetse/Rouwendal 2010, p. 9).

The Central Planning Bureau (CPB) also undertook economic analyses of the Betuwe Line. Interestingly the studies in 1993 (CPB 1993) and 1995 (CPB 1995) contradicted each other. The earlier study estimated a payback period of 15 to 20 years, and was built on the Knight Wendling studies of 1991/1992. The later study concluded that there might have been more beneficial projects than a new Betuwe Line and recommended a phased approach, i.e.
start building profitable sections first (e.g. those close to the Port of Rotterdam). It then suggested a reassessment of the most beneficial sections (CPB 1995).

However, these assessments did not apply a proper transport forecast or did not build on a sufficiently detailed cost assessment as the project was not sufficiently specified. In fact they were so incomplete that the Netherlands Court of Audit, in the year 2000, still stated “that a sound and comprehensive cost/benefit analysis of the Betuwe Route is missing.” (quoted after Vrijland 2004, p.4).

Some discussions about alternatives took place, e.g. whether to build the whole track in a tunnel, or whether to improve inland waterway transport instead. However, Priemus (2007) argues that these alternatives to the Betuwe line have never been seriously considered by the government, though he acknowledges that various engineering variants of a rail track were analysed in 1993. Actually the Betuwe line as it has finally been built can be seen as variation of the very first plans, which had been to renew the existing single track. In fact most of the track is completely new, which explains a significant part of cost differences in comparison to the very first cost estimates of 1990.

2.2. Methodology and comments on the environmental analysis

The environmental impact analysis concentrated on the emissions of air pollutants (e.g. CO, NOx), while issues such as noise, safety or land use have been neglected. Thus the Netherland Court of Auditors concluded that “Decisions were made on the assumption that the Betuwe Line was strategically important to the economy and environment. Little priority was given to finding policy information to support that assumption.” (Algemene Rekenkamer 2000).

However, the basic decision to build a new track instead of renewing the old track passing through 15 villages indicates that environmental and health concerns associated with settlements have been taken into consideration. Vrijland also reports that noise reduction plans and safety measures have been implemented to take such concerns into account (Vrijland 2004). In that sense, Vrijland questions the findings of the Netherland Court of Auditors. At the end of 2012 an ex-post EIA was published confirming that the Betuwe line generally complied with environmental regulation. However, it was concluded that 27 houses are affected with noise/vibration above legal limits (Moraves 2012).

2.3. Characteristic of the transport demand scenario and its economic drivers

The transport demand scenario underpinning the economic analyses of the Betuwe Line project seems to be the most flawed aspect of the whole assessment, at least during the 1990s. Table C2-2 presents the transport forecast as it was used from the earliest assessment of the Betuwe Line by Knight Wendling. What is important is the difference between 40 and 65 million tons of rail freight in 2010. This covered all rail freight and was not specifically targeted at the Betuwe Line. Nevertheless, it seems that this general growth was proportionally assigned to the improved Betuwe Line to determine benefit figures. However, Koets/Rouwendal conclude that "an independent assessment that investigated the demand for freight transport over the Betuwe route under particular conditions of price and quality was never conducted.” (Koets/Rouwendal 2010, p.59).
Table C2-2: Transport demand scenario underpinning the Betuwe Line decision
Dutch freight demand in [million t]

<table>
<thead>
<tr>
<th>Scenario / Mode</th>
<th>1987</th>
<th>2000</th>
<th>2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline scenario</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Road</td>
<td>456</td>
<td>600</td>
<td>749</td>
</tr>
<tr>
<td>Rail</td>
<td>18</td>
<td>32</td>
<td>40</td>
</tr>
<tr>
<td>Waterway</td>
<td>234</td>
<td>288</td>
<td>317</td>
</tr>
<tr>
<td>Total</td>
<td>707</td>
<td>920</td>
<td>1,106</td>
</tr>
<tr>
<td>Ambitious rail scenario</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Road</td>
<td>455</td>
<td>581</td>
<td>715</td>
</tr>
<tr>
<td>Rail</td>
<td>18</td>
<td>48</td>
<td>65</td>
</tr>
<tr>
<td>Waterway</td>
<td>234</td>
<td>291</td>
<td>326</td>
</tr>
<tr>
<td>Total</td>
<td>707</td>
<td>920</td>
<td>1,106</td>
</tr>
</tbody>
</table>

2.4. Investment cost and structure of financing

The first estimate of investment cost of the Betuwe line amounted to EUR 1 134 million in 1990. As Table C2-3 shows, the cost continued to increase up to the total construction cost of EUR 4 705 million by 2008. This represents an increase of 315% which occurred for various reasons. These included extensions of the line, mitigating environmental impacts, adaptations of the engineering specifications (e.g. tunnels for double stack trains) and inflation during the planning and implementation. Close to 30% of the cost increase was due to inflation. A more detailed list of the construction-related cost increases is presented by Pestmann (2001).

At the time of the government decision on the implementation of the Betuwe Line the cost estimate had reached EUR 3.67 billion. The cost increase to completion in comparison with that figure would have been EUR 984 million or roughly 27%. This could be split into 67% representing inflation and about 17% for changes of scope of the project. Less than 10% should be attributable to shortcomings in design or estimates (Vrijland 2004, p.6). This positive evaluation of the implementation process was also confirmed by the NETLIPSE project that estimated that once the scope of the project was fully specified and planned, the further cost increases only amounted to 2%. Their analysis concluded that risk management was excellent during the implementation phase with 10% of budget assigned for contingencies. Half of this was allocated to project managers and half to the project director. There was also budget assigned to the establishment of an independent risk management department (Hertogh et al. 2008).
Table C2-3: Cost development of Betuwe line (in EUR million)

<table>
<thead>
<tr>
<th>No</th>
<th>Date</th>
<th>Issue</th>
<th>Extra cost</th>
<th>Total cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>06/1990</td>
<td>Cost estimate with 50% private financing</td>
<td></td>
<td>1 134</td>
</tr>
<tr>
<td>2</td>
<td>01/1992</td>
<td>Extension to Rotterdam-harbour (Maasvlakte)</td>
<td>+363</td>
<td>1 497</td>
</tr>
<tr>
<td>3</td>
<td>04/1992</td>
<td>Choice of trajectory Maasvlakte-Zevenaar</td>
<td>+838</td>
<td>2 335</td>
</tr>
<tr>
<td>4</td>
<td>05/1993</td>
<td>Adaptations to mitigate adverse effects on the environment (local resistance)</td>
<td>+497</td>
<td>2 832</td>
</tr>
<tr>
<td>5</td>
<td>09/1993</td>
<td>Mark-up for price inflation</td>
<td>+72</td>
<td>2 904</td>
</tr>
<tr>
<td>6</td>
<td>12/1993</td>
<td>Adaptation to parliamentary and provincial demands, Barendrecht now in the project</td>
<td>+335</td>
<td>3 239</td>
</tr>
<tr>
<td>7</td>
<td>04/1994</td>
<td>Mark-up for price inflation</td>
<td>+119</td>
<td>3 358</td>
</tr>
<tr>
<td>8</td>
<td>1996</td>
<td>Trajectory decision leading to adaptations including four new tunnels</td>
<td>+386</td>
<td>3 744</td>
</tr>
<tr>
<td>9</td>
<td>1996-2005</td>
<td>Change of scope due to political decisions (e.g., Dintelhaven bridge, double-stack ready tunnels etc.)</td>
<td>+321</td>
<td>4 065</td>
</tr>
<tr>
<td>10</td>
<td>1996-2005</td>
<td>Mark-up for price inflation</td>
<td>+783</td>
<td>4 848</td>
</tr>
<tr>
<td>11</td>
<td>01/2006</td>
<td>Cost forecast including risk</td>
<td>-195</td>
<td>4 653</td>
</tr>
<tr>
<td>12</td>
<td>12/2008</td>
<td>Reporting of total cost in the EC TENtec system</td>
<td>+52</td>
<td>4 705</td>
</tr>
</tbody>
</table>

Total cost increase: 315% 3 571
Cost increase due to adaptations of route / engineering: 229% 2 597
Cost increase due to inflation: 85% 974

Source: Vleugel/Bos 2008 after ProRail 2006, and own analysis.

Though the Betuwe Line has been operating since 2007, several projects in connection with the Betuwe Line have been subsequently co-funded by the TEN-T funding. To mention some examples (in brackets the TEN-T EA codes):

- third track in The Netherlands to the Dutch border (2010-NL-92226-S, EUR 0.8 million),
- retrofitting locomotives with ETCS/ERTMS (2007-NL-60380-P, EUR 9 million),
- studies and works on the third track in Germany (2007-DE-24040-P, EUR 47 million).
2.5. Development since the last study

This study identifies two important developments with respect to the Betuwe Line. First, an ex-post EIA was published (Movares 2012) broadly confirming the compliance of the Betuwe Line with environmental regulations, with the exception of noise/vibration impacts affecting 27 houses. The Minister of Transport declared these adverse impacts should be mitigated in close collaboration with the affected citizens.

Second, progress concerning planning and funding of the German connections to the Betuwe Line from Emmerich to Oberhausen was made in 2013. In July a funding agreement between the German Federal State and the Lander of North Rhine-Westphalia was achieved. The plan approval process of all 12 sections of the 73 km track was started by the end of 2013. The cost estimate at that time amounted to EUR 1.5 billion.

2.6. Conclusions to be drawn

The Betuwe Line presents a prominent example of a political decision on a transport project, triggered by a stakeholder (i.e. the Port of Rotterdam). The project fitted strategic plans promoting the concept of “Mainports”, being the Netherlands Schiphol airport and the Port of Rotterdam. However, as a socio-economic ex-post analysis is still missing, we cannot decide whether the project was actually beneficial in socio-economic and financial terms. A rough estimate of revenues using the last available figure of 500 trains per week running along the full length of the Betuwe Line at a tariff of 2.88 Euro/km generates a total revenue of about EUR 12 million per year. This could be close to earlier estimates of operating cost (Gebbink 2009).

We should note that both the transport demand forecast and the ex-ante economic analysis, both in itself and as it builds on a flawed transport forecast, were clearly insufficient to take an informed decision on funding of such a large project.

From the European perspective the project fits well into the strategic transport policy objectives as it promotes rail freight and makes it attractive for long-distance transport on major demand corridors connecting European freight/economic hubs. However, the socio-economic benefit should still be proven by an ex-post analysis, particularly as European funding is to be provided to complete further sections of the track at both ends.

The CPB (1995) advocated a phased approach to develop the Betuwe Line by building the less costly and obviously beneficial sections in the earlier phases, enabling following sections to be better assessed. However, the network topology should be taken into account when developing the first sections. Such an approach should avoid the creation of new bottlenecks, as seems to happen with the connecting line in Germany where the third track between Emmerich and Oberhausen will only be completed by 2022.
2.7. References

- Gebbink A. (2009), Die Betuweroute: XIII. Rentabilität der Strecke. Netherlands portal at the University of Munster, Germany.

- Pestmann P. (2001), In het spoor van de Betuweroute. Rozenberg, Amsterdam.

- ProRail (2006), De Betuweroute, slagader van het goederentransport per trein.

ANNEX 3. RAIL BALTIC(A)

This case study is divided into two main reports. The first corresponds to the previous project Rail Baltica of PP27, and the second is the updated report on the Rail Baltic project. There are problems distinguishing the two projects because they are so interrelated and sound so similar.

In order to make a clear distinction, we refer to Rail Baltica as the renewal and/or upgrade of the existing wide gauge rail network of the Baltics, which has largely taken place over the last 10 years, but is still undergoing improvements. Rail Baltic, as we understand it, is the new standard gauge rail network that will establish a fast north-south link from Helsinki through the three Baltic countries to Warsaw, and even as far as Berlin. In this updated study, we concentrate on Rail Baltic. For information purposes, the previous report on Rail Baltica is added to the end of this section.

In order to advertise the project, the Rail Baltica Growth Corridor (RBGC, online) was initiated by the cities of Helsinki and Berlin with 21 partners from Baltic Sea Region countries as part of a Flagship Project within the EU strategy for the Baltic Sea Region (EUSBSR) 2007-1013. It aimed at promoting transport policies for the development of multimodal logistics and a modern railway infrastructure in the Eastern Baltic Sea Region, focusing on improving passenger mobility and freight transportation along the Rail Baltica route, while fostering a multi-level dialogue with the different stakeholders. They highlight the importance of this project for: city and regional authorities, transport service providers, logistic centres, intermodal terminals, public transport authorities, and universities and research centres (RBGC, online). As a final step, the partners produced the Rail Baltic Growth Strategy (RBGS, 2013). It clearly explains how the Rail Baltica reconstruction plan has been transformed into the Rail Baltic project.

Figure C3-1: Rail Baltic(a) Growth Corridor

![Rail Baltic(a) Growth Corridor](image)
According to the new TEN-T guidelines (European Commission, online), the new core network will: “Connect the ports of the Eastern shore of the Baltic Sea with the ports of the North Sea. The corridor will connect Finland with Estonia by ferry, provide modern road and rail transport links between the three Baltic States on the one hand and Poland, Germany, the Netherlands and Belgium on the other. Between the Odra River and German, Dutch and Flemish ports, it also includes inland waterways, such as the “Mittelland-Kanal”. The most important project is “Rail Baltic”, a European standard gauge railway between Tallinn, Riga, Kaunas and North-Eastern Poland”.

3.1. The new Rail Baltic project

There is a general belief that the Rail Baltica project is almost complete, because it has achieved its goal of connecting the different Baltic States to Poland using both 1 520 mm and 1 435 mm gauge railways. The common understanding is that it will finally be finished during 2015 because some security systems have delayed its operation. According to different sources (see for example RBGS, 2013), it was while developing the Rail Baltica project that the new Rail Baltic project started to take shape when attempting to set a European electrified standard gauge of 1 435 mm so that it could be used with higher velocities (a maximum speed of 180 km/hr is mentioned which is a significant upgrade from typical speeds in the area) and freight traffic. The Rail Baltic project is regarded as more ambitious and more attractive than the earlier Rail Baltica one. It starts via ferry from Finland to Tallinn (Estonia), continues on the European 1 435 mm gauge through Riga (Latvia) and Kaunas (Lithuania) to Poland (Bialystok, Warsaw) and then Berlin. The Rail Baltic project has not yet started, but the goal is for it to be completed by 2026.

It is important to highlight that the Russian railway standard gauge is 1 520 mm, while the European one is 1 435 mm. This change of gauge is apparent at present on the Lithuanian-Polish border in a small village called Sestokai. The railway network from Estonia, Latvia, Lithuania, and Poland has been improved since they joined the EU in 2004 and the PP27 included many infrastructure reconstructions, both for 1 435 and 1 520 mm (RBGS, 2013).

This project would mean that there are cases where the two gauge systems work together for regional and international purposes. It is considered to be one of the most important transnational transport projects. It has an approximate cost of EUR 3.6 billion (RBGS, 2013). The problem lies in the different options to achieve interoperability of different rail gauge systems. The RBGS (2013, p.23) describes the different alternatives discussed along with the opportunities, drawbacks, and costs for both passenger and freight transport. One of the most important drawbacks highlighted is regarding the strong economic links running east and west between Russia, Ukraine and Belarus, and the Baltic countries in contrast to the now weaker north-south economic links (RBGS, 2013 p.28). Some people claim that the current N-S demand is already being met by road transport. According to a recent report (Hilmola, 2012 p.13), however, there are weight restrictions in place on many of the Baltic States’ and Polish roads which make it impossible to use combined trucks of up to seven axles or a gross weight of 60 tons similar to Finland or Sweden. Nevertheless the report does mention that transport units are rarely filled at total capacity.

Many countries prioritize other projects or simply lack strong political commitment. Therefore, the importance of rail as a sustainable form of transport, and the commitment to cooperation between different levels of authorities should be reinforced along with the agreement to build different key parts of this project (such as multimodal hubs in freight and passenger).
Figure C3-2 gives a clearer picture of the exports and imports of each country involved with the Rail Baltic project. The next sections also provide more details about the facts and situation of each of these countries.

Figure C3-2: Exports/Imports of countries involved in the RAIL BALTIC project

![Diagram showing exports and imports of countries involved in the RAIL BALTIC project]

3.1.1. The three Baltic states

A recent qualitative study carried out by Laisi and Saranen (2013) using semi-structured interviews describes the Baltic countries’ vision of the Rail Baltic project. In general terms, the countries share the perception that being part of the EU has increased the level of funding and diminished cross-border problems. The following paragraphs briefly present their main findings.

In **Estonia**, the general vision of the Rail Baltic project is very positive. The project connects Tallinn to Tartu, the second largest city. The connection Tallinn-Tartu-Valga has recently been improved. Estonia’s national priority is the connection between Tallinn, Narva, Tartu and Pärnu. It is important to note that many people in South Estonia use Riga airport, so a rail connection here is important. Bus and rail stations are located at different places. With regards to freight, the main flows are east to west and are dominated by rail. They normally transport raw materials from Russia to Estonian ports which, it is noteworthy, are not city owned. North-south transport routes use the Via Baltica road route, and are not that intensive. People interviewed in the study believe that the Via Baltica will not be sufficient in the future. The general perception of Rail Baltic in the country is quite positive.
Rail is also the most used transport mode for east-west freight in Latvia (from Russia or Kazakhstan to Latvian ports), which is the most important freight route. The Via Baltica road is also used for north-south transport. Latvia’s national priority is now to connect regions’ logistic centres polycentrically. There seems to be a problem regarding the poor level of accessibility and infrastructure to the Riga port, although in general terms the rail infrastructure is reckoned to have a good level of service. Rail is mainly used for commuters around Riga, whereas at national level, passengers tend to move by bus due to the higher frequencies but similar costs and travel time. It was questioned how important the north-south rail freight connection could be because there is always a cheaper sea transportation option. Still, the connection to Finland could increase the feasibility of the project. The project is also seen as an opportunity to put the country on the international stage.

Lithuania benefits from its location: Latvia to the north, Poland to the south, Belarus to the east and Russia to the west. It has two strong economic centres: Vilnius (the capital) and Kaunas. The connection between the axis Klaipeda-Kaunas-Vilnius has been improved, as it is a national priority. The most important flow of freight is by rail from east to west although the links to both the south and the north (Poland and Lithuania respectively) are also important. Freight flows here are again mainly handled by road along the Via Baltica, which is seen as insufficient for freight (especially heavy freight flows), even if the road infrastructure is regarded as one of the best in Eastern Europe.

The connection between Kaunas and Vilnius has recently been improved and it now takes less than an hour to reach both cities by rail. Recently, Lithuanian law was changed so that public-private partnership (PPP) projects in the transport sector are now possible. Interesting to note that, according to this study, Lithuania sees the Rail Baltic project as an opportunity to improve the accessibility throughout the country.

3.1.2. The Helsinki-Tallinn connection

Helsinki and Tallinn are separated by only 84 km and freight flows are normally transported in ROPAX vessels\(^\text{16}\). RORO vessels are not used because of the high frequencies (Hilmola, 2012). This report concludes that the link between these two cities will become more expensive the moment environmental policy increases internalisation of external cost for road and short sea shipping (for example, due to sulphur regulation due in 2015).

As mentioned in the report edited by Olli-Pekka Hilmola (2012 p.11), Finland faces great disadvantages in its interoperability with the rest of Europe regarding railway systems. It has a different gauge (1 524 mm) and different signalling systems, even though the electrical system is the same. Therefore, seamless and low-cost railway links using ships to Europe cannot be envisaged.

In fact, the Rail Baltic project is of high importance for the Finnish export industry. It is the last country in the freight chain and being well connected to the rest of Europe or even to Russia is very important. Finland is an observing country in the inter-ministerial Rail Baltic Task Force.

\(^{16}\) **ROPAX** (roll-on/roll-off passenger) describes a RORO vessel built for freight vehicle transport along with passenger accommodation. Technically this encompasses all ferries with both a roll-on/roll-off car deck and passenger-carrying capacities, but in practice, ships with facilities for more than 500 passengers are often referred to as cruise ferries (Wikipedia, 2014).
A tunnel has been on the agenda as a possible solution to rail links, but high costs and other difficulties have diminished its likelihood. It is difficult to justify this project from an economic perspective, but Finland and Estonia are still interested in the idea because of the multiple opportunities it would trigger. There are only a few reports or articles discussing the feasibility of such a tunnel (Saranen, 2010; Puzyns, 2010), for example, the one edited by Juha Saranen (2010) in the framework of intermodal transportation in emergency situations in the Gulf of Finland. They mention that a cost-benefit ratio of about 0.468 is expected (Saranen, 2010 p. 64), which would not indicate a viable transport investment, but could be used as a starting point to improve commerce with the rest of Europe, achieve greater competitiveness and reduce the risks of relying on only one infrastructure during emergency situations such as strikes, volcanoes, etc. A later research study (Hilmola, 2012 p. 98) discusses that, in the long term, the railway tunnel and railway freight connection would benefit from lower CO₂ emissions and hence fewer total costs.

3.1.3. The importance of the Russian bond

Regarding its opportunities, the Rail Baltic project highlights that transit among the Baltic countries is currently mainly based on road transport for both passengers (in private cars or buses) and freight. However, rail transport is used mostly to carry Russian freight to the Baltic seaports (almost 95%). In this respect, logistics will play a major role in this infrastructure and therefore for improving East-West connections commitment of other countries such as Russia, Belarus and Ukraine should be reinforced. Moreover, most of the tourists in this region come from Russia.

The city of Warsaw commissioned a study on the “Private transport market stakeholders in the area of Rail Baltica” (EU-Consult, 2011), which aimed to assess the opinions and attitudes of the private sector. It was conducted in Germany, Poland, Lithuania and Latvia. It included surveys of cargo dispatchers and cargo carriers, passenger carriers, shipping companies and logistics companies. As stated in this RBGC report (EU-Consult 2011, p.7), the new corridor presents different pictures. For example, Poland and Germany have well-developed land transport links with central Europe whereas the Baltic States are dependent on sea traffic and the Via Baltica road link. There are even differences in accessibility between Nordic countries. The results of this study show that, in general, the private sector expects the Rail Baltica to improve connections with Russia for trading, particularly to Moscow, a point which was mentioned by all the countries in this study. Poland would like to have direct links or better connections from their ports to Russia. They have already tested Kutno (central Poland) on the Rotterdam-Moscow route (via Belarus). Other countries also expect this link to improve trading with more distant countries than Germany. There was even interest in a container train that could reach China.

Studies have shown that most of the potential freight volume of Rail Baltic would come from Russia. To provide a clear picture of the importance of Russia in the region, Russia reported 8.5 billion tons of freight in 2012 in the whole Russian Federation (Laisi et al., 2013). The report by Karamysheva et al. (2013 pp. 23-30) reviews a good number of studies regarding the freight situation in Russia. It shows that, despite some positive trends in Russian transport sector development, there are still many negative aspects related to the lack of carrying capacity of road and railway transport, such as old rolling-stock, non-transparent tariff system, inefficient interoperability of transport modes, problems related to customs, and so on. In fact Russia has a very low position (95th) on the Logistics Performance Index (LPI), close to countries like Kuwait or Ecuador, and a long way from countries like Germany, Sweden or Singapore. Pipelines are the most utilized mode of
transport followed by road and rail (Laisi et al., 2013). The following paragraphs outline the main freight transport modes.

Air transport is only used for high-value cargo and has grown very slowly (approx. 1% per year). **Maritime transport** is mainly for raw and bulk cargo. Russia did not have any major ports after the collapse of the USSR since these belonged to the Baltic States. Russia intended to overcome this drawback by developing new port facilities in the North-West and has invested a lot of resources here (e.g. in St. Petersburg). Maritime transportation only accounts for 0.5% of total freight transport in Russia and 2.1% of commercial revenues (Karamysheva et al., 2013). However, a later report shows that the North-West Russian seaports increased from 27 million tons in 2001 to 181 million tons in 2012 (Laisi et al., 2013).

According to the report by Karamysheva et al. (2013), **road transportation** has the largest volume with around 67% but a minor turnover of up to 4%. It has experienced continued growth since 2009. Nevertheless, most of the road network was constructed during the USSR era and was therefore designed for a much lower capacity than the current one. Moreover, the fleet is very old and the organization chain of logistics distribution is known to be very inefficient. In terms of the volume transported, pipelines are in third place, although they are first with regard to revenues. Most of the exports are sent to European countries such as Germany, the Netherlands and Poland. This means of transport depends on Eastern European countries as the infrastructure passes through these countries.

Finally, **railway transportation** accounts for around 30-35% of the total volume of commercial freight and 40-45% of commercial revenues (Karamysheva et al., 2013). This study cites raw materials as the goods most transported by rail. It is interesting to compare tons transported by rail to other modes: rail transport volumes in Russia increased from 1.0 billion tons in 1995 to 1.4 billion tons in 2012. Russia must follow certain trading rules since it joined the World Trade Organization (WTO) in 2012, among other issues, and is obliged to unify railway tariffs to improve the system. The system is currently undergoing deregulation and, with respect to the link to west (Europe), is a good competitor with road transportation.

Due to all the issues already explained, the Rail Baltica Growth Corridor- Russia (RBGC-Russia) was founded (RBGC-Russia, online) as pictured in Figure C3-3 and Figure C3-4. It seeks to promote transport and logistics networks between North-West Russia (Leningrad Oblast and St. Petersburg) and the EU-states in the eastern Baltic Sea region. It is a sister project to RBGC and intends to foster the political dialogue regarding the Rail Baltic project. It is financed by the Delegation of the European Union to Russia. The report by Karamysheva et al. (2013) states that the rail transit corridor between the Baltic States and Russia could be competitive if prices, frequencies, and improved times are achieved. Russia should tackle interoperability problems and capacity problems at border-crossing points to make this project feasible. The study of Laisi et al. (2013), which collected data in the public transport sector, also states that both road and rail networks need more investment to attain minimum standards. Interviewees highlighted problems regarding border crossing, the harmonization of legislation, customs procedures and information technologies. They also agreed on the importance of improving rail services in Russia in order to make the Rail Baltic project successful. Public sector respondents were doubtful about the Rail Baltic project. Shifting freight to rail from ports would be neither easy nor profitable. They pointed out that each separate Baltic State (Estonia, Latvia and Lithuania) on its own does not generate enough cargo flows for a mega project like Rail Baltic. The
freight to their ports comes from Russia. Moreover, eventually prioritizing either passenger or cargo transport could be an issue. Authors of this report mention that the Sulfur Directive may force all the stakeholders to cooperate in order to find new transport solutions. The project is more appealing to European actors, while the Russian actors do not regard it as promising and do not want to waste the money already invested in ports.

Figure C3-3: The Rail Baltic Growth Corridor - Russia

![Rail Baltic Growth Corridor - Russia](source: Laisi et al. (2013)).

3.1.4. The Joint Venture

Last summer (2013) there was a political agreement between the countries involved in the Rail Baltic project and the European Commission to use a Joint Venture (JV) to Build, Manage and Operate the infrastructure in order to access cohesion funds and other economic resources. This is especially beneficial to countries like Latvia, Estonia and Lithuania, since they do not have the infrastructure to do it by themselves. In spring 2014, the JV had to submit a financial proposal to the European Union in order to access funds of up to 85% of the costs. Moreover, with its new policy on priority projects, the EU plans to allot a total of € 10 billion to projects in cohesion countries. The report "Rail Baltic Joint Venture Study" was published last year (TRINITI, 2013) and covers different issues such as legal ones, taxes, financing, along with different European experiences. However, it still refers to the study carried out by AECOM (2011). Most importantly, it highlights the many risks associated with a large and cross-border infrastructure. These are mainly related to the differences in laws and governments between countries but there are also rail-specific and environmental planning risks. Others include cost estimation risks, tender procurement risks, contractual risks, risks related to the permissions or licenses that have to be obtained, land acquisition and financing risks. There are also cultural and communication
problems, construction and timetable risks, risks related to nature and resources, and the chance some governments will change the long-term goals of the project framework (TRINITI, 2013 p.160).

According to Malla Paajanen Consulting (online), there have been different activities in order to push the Rail Baltic project. For example, a kick-off conference in Brussels on January 8-9, 2014, hosted by the European Commission, DG MOVE for the nine Core Network Corridors. The European Coordinator for the North Sea-Baltic Corridor continued to be Pavel Telička with James Pond as advisor, but only until mid 2014 when the former became elected MEP. The Proximare Consortium includes Tõnis Tamme (Triniti), Juergen Werner (Norton Rose Fulbright), Gerard Bruil (Goudappel Coffeng), Martin Heiland (IPG-Potsdam) and Malla Paajanen. This consortium is in charge of carrying out a study on the development of the Rail Baltic connection including environmental and economic feasibility studies. Up to now, the only available study is the one carried out by AECOM (2011), which, as stated before, was the one used in the TRINITI report.

3.1.5. Arising concerns

Interest varies among countries. Poland’s interest is greater and the border with Lithuania and the resulting bottleneck is an important issue for both countries. The RBGC report (EU-Consult, 2011) states that the interest of Latvia has diminished. According to this study, public and private road transportation companies feel threatened by the Rail Baltic project, and they need to know how they stand to benefit from it in order to cooperate. It should be further developed the awareness of price and duration of rail transport with industry so they can understand and realize a benefit from switching to rail transport.

Figure C3-4: Picture of the long-term Rail Baltica / Rail Baltic Growth Corridor - Russia

During the last TEN-T days in October 16-18, 2013, the EU said it will invest around EUR 26 billion to co-fund transport projects specially intended to improve cross-border transport, to
overcome bottlenecks and improve the network. Later, a “Rail Baltic Express Conference” was held to discuss the experiences and findings from the RBGC (The Wall Street Journal, online). Information about the RBGC-Russia was also presented. In Tallinn, Commissioner Siim Kallas signed an agreement worth EUR 11.3 million for the cooperation project between the ports of Helsinki and Tallinn, known as the TWIN-PORT project. This aims to improve ferry operation in both ports and the ferry capacity between Helsinki and Tallinn (Malla Paajanen, online).

Finally, the Lithuanian situation poses a problem. In the official project (PP27), the rail connection passes through Kaunas, but the authorities expect the new Rail Baltic project to pass through their capital, Vilnius, as is the case in the rest of the countries. This is not the current plan, however, and would therefore increase costs. Some countries state that Lithuania should fund the link from Kaunas to Vilnius themselves, especially when taking into account that the country could get Cohesion Funds because of its status as an eligible country for cohesion funding. Moreover, the rest of the partners resent the delayed opposition to the project by Lithuania, since the design has been under discussion for several years.

In our understanding, the AECOM study (2011) refers to what today is called “Rail Baltic”. Figure C3-5 shows the concept used in this study. Therefore we use the AECOM analysis to assess Rail Baltic (see Table C3-1 and Figure C3-5).

Figure C3-5: Rail Baltic as defined by the AECOM study

3.2. Conclusions regarding the Rail Baltic project (Updated version)

It seems evident that Russia plays an important role in this area; therefore, more attention should be paid to link the Rail Baltic project with this country.

It is true that freight flows east to west, the question is how to make a profitable line with only one-way full capacity. Will the way back remain empty? The same applies to the link north-south. Finland may benefit from this new link, but it seems necessary to plan a profitable link south-north as well.

In order to make this project happen, the EU must focus on discussing it with Russian counterparts. An earlier approaching of Russia with regards to the Rail Baltic project means more flexibility of project designs and thus more bargaining opportunities to the EU.

As we understand it, there have been no recent concrete studies on the feasibility of the Rail Baltic project; an updated and improved version of the AECOM study is necessary. Table C3-1 would be helpful for a new study by filling gaps or updating information.

Ensure the Rail Baltic line provides comfortable links to main cities and major centres of employment. Transport hubs should be constructed within the Rail Baltic project to function as interchange stations between different transport modes (for example, airports and bus stations). Therefore, transport plans for such interchange stations are needed and coordination between transport authorities is required. Another reason to plan interchange stations is to ensure high local accessibility using different modes, especially by public transport.

One suggestion is to observe the planning process of the “Sectoral Plan AlpTRansit” of the New Railway Link through the Alps (NRLA), where Federal, Cantonal and local authorities discussed and integrated their spatial planning activities. There was a binding document for all levels that must be taken into account for future planning. This document is seen as one of the key success factors for the NRLA (Hertogh et al., 2008).

New sidings for warehouses and industrial sites should be planned to enhance the use of the Rail Baltic project for railway freight services in the long term.

The export/import figures are a cause for concern. There are different scenarios that are not positive for all the countries. For example, the fact that trains may be full from east to west (from Russia to Germany or to the Baltic countries) or north to south, but not on their return journeys is not cost-effective. Another possible scenario is that the project will primarily function as a bridge between Russia and central Europe, and in this case, the efforts and investments of the Baltic countries would not be profitable. Therefore, clear and practicable strategies are required to promote commercial trade between all the countries involved.

A rail network that solves interoperability, coordination and border-crossing problems would definitely improve the performance of the project (for example, one train driver could operate in the different states on the Rail Baltic line). For this to happen, all the states involved in the project have to define common standards and guidelines for a Rail Baltic railway authority. The former is an outstanding goal that has so far not been achieved in a European rail network.
As a positive point, there has been a huge effort recently to produce many research studies improving knowledge about the impact of the Rail Baltic project and the vision of the different stakeholders. On the negative side, however, the concrete figures needed for a detailed picture of the Rail Baltic project are still missing.

Taking the above comments and conclusions into account, it is not surprising that the outgoing TEN-T coordinator for Rail Baltic, Pavel Telička, concluded his last report by stating "that a unified, collective effort is required from all the partner countries in the next five years if the project is to be successfully achieved." (Telička 2013).

3.3. Rail Baltic(a) and the feasibility studies

"Rail Baltica" is a strategic rail project linking four new EU Member States - Poland, Lithuania, Latvia and Estonia. In addition, it is the only rail line connecting the three Baltic States themselves to Poland and the rest of the EU. To the north, Helsinki is connected by rail ferry services across the Gulf of Finland. The existing rail tracks in the three Baltic States are wide gauge. The basic direction of the networks is East-West to enable links to the Baltic ports and from and to Russia.

The length of the current track is approximately 1 200 km by the most direct existing route from Tallinn to Warsaw. A variety of track and operating systems are currently in use: single and double track, electrified and non-electrified (of which single track non-electrified is the most common system). Rail Baltic(a) is thus facing a number of specific challenges, like to combine renewal of tracks with upgrades and new construction (e.g. of double tracks), combining standard gauge with gauge or connecting these two types of networks or improving electrification and signalling along the line.

As it was mentioned in the previous report, there are two major feasibility studies. The most recent, carried out by AECOM (2011) and the other one carried out by COWI et al. (2007). The next sections discuss each of these studies in detail.
Rail Baltic project summary of investment and cost

<table>
<thead>
<tr>
<th>Aspect</th>
<th>Description</th>
<th>Aspect</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Title</td>
<td>Rail Baltic (new standard gauge line)</td>
<td>TEN-T code</td>
<td>PP27</td>
</tr>
<tr>
<td>Countries / area</td>
<td>(Poland,) Lithuania, Latvia, Estonia The study refers to the Baltic part of</td>
<td>Start date</td>
<td>Open</td>
</tr>
<tr>
<td></td>
<td>the Rail Baltica corridor</td>
<td>End date</td>
<td>Open</td>
</tr>
<tr>
<td>Mode(s)</td>
<td>Railways</td>
<td>Duration</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Managing authority</td>
<td>Various for the different sections (e.g. National Ministries, railway</td>
<td>Delay (mth)</td>
<td>Not applicable</td>
</tr>
<tr>
<td></td>
<td>operators), Mr Pavel Telička (European Coordinator)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Investment cost (m€)</td>
<td>EUR 3 539 million ('best feasible option') without design and planning,</td>
<td>Length (km)</td>
<td>728 km ('best</td>
</tr>
<tr>
<td></td>
<td>project management, site supervision and VAT. With above positions: EUR 3</td>
<td></td>
<td>feasible option'</td>
</tr>
<tr>
<td></td>
<td>780 million.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EC funding TEN-T (m€)</td>
<td>Underlying assumption: EU grants 56.3% of the total investment costs (85%</td>
<td>EC share</td>
<td>56.3%</td>
</tr>
<tr>
<td></td>
<td>of the investment costs to which co-financing rate for priority axis applies)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EC funding Cohes. (m€)</td>
<td>Underlying assumption: EU grants 56.3% of the total investment costs (85%</td>
<td>EC share</td>
<td>56.3%</td>
</tr>
<tr>
<td></td>
<td>of the investment costs to which co-financing rate for priority axis applies)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Funding agent 1</td>
<td>EU (various sources)</td>
<td>Value (m€)</td>
<td>EUR 1.992</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>billion (without design and planning, project management, site supervision and VAT)</td>
</tr>
<tr>
<td>Funding agent 2</td>
<td>National funds by Baltic States, other sources</td>
<td>Value (m€)</td>
<td>EUR 1.547</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>billion (without design and planning, project management, site supervision and VAT)</td>
</tr>
</tbody>
</table>
Cost-benefit analysis

- **Cost-benefit analysis**: AECOM
- **CBA ratio**: 1.75
- **Public y/n**: y

Transport scenario

- **Dated from**: 2011
- **Transport scenario**: There are four different draft alignment schemes on the corridor, but the main assessment results refer to the identified ‘best feasible option’

Externality covered

- **Externality covered**: Air pollution; safety (accidents); climate change
- **Ext. cost (mC)**: EUR 828 million benefits (discounted)

EIA

- **Public y/n**: y
- **EIA**: The study contains a chapter on environmental considerations, in which effects are discussed on Natura 2000 sites, noise impacts, impacts on rivers, water courses and cultural heritage.

CIA

- **Public y/n**: y
- **CIA**: Impacts on CO₂ emissions are estimated.

Financial analysis

- **Expected RoI**: Economic IRR: 9.3%
- **Financial IRR**: Financial IRR (from the perspective of the infrastructure manager) : 0.05%, without EU contribution
- **Financial analysis**: Financial analysis carried out from the perspective of following three agents:
 - Infrastructure manager
 - Operator of passenger trains
 - Operator of freight trains

Ex-post evaluation

- **Cost overrun (mC)**: Not applicable
- **Ex-post evaluation**: Not applicable

Source: own analysis.

3.4. Methodology and comments on the CBA and project selection

The study embraces an economic assessment (CBA approach) and financial assessment, and relates to the Baltic part of the Rail Baltic corridor between the Lithuanian/Polish border and Tallinn.

The methodology applied is in line with the method set out in DG Regio’s Guide to cost-benefit analysis of investment projects, and incorporates “in some way” input from the Railway Project Appraisal Guidelines by the EIB, the HEATCO project and the IMPACT study, the latter both carried out on behalf of the European Commission. The elements of the applied CBA are as follows:

- Capital costs
- Maintenance costs
• Track access charges
• Residual value of the project
• Operating and maintenance costs
• Revenues from customers
• Travel time savings
• Accident costs
• Air pollution
• Greenhouse gases.

The financial assessment focuses on cost and revenues from the perspective of three different agents:

• Infrastructure manager
• Operator of passenger trains
• Operator of freight trains.

The considered cost and revenue elements of infrastructure managers are as follows:

• Investment costs
• Residual value
• Access charges from operators
• Maintenance costs.

For the financial analysis, the following components are considered from the perspective of operators of passenger (freight) trains:

• Revenues
• Operating costs (including track access charges).

The obtained results are subject to a risk analysis, including sensitivity tests, the identification of critical variables, and the application of probability distributions to key variables.

The ‘best feasible option’ is identified on the basis of passenger and freight demand (volumes, revenues, time savings, CO₂ / GHG savings) and other ‘key factors’. The identified option represents the most direct and shortest route from the southern-most point to the northern-most point of the corridor.

3.5. Methodology and comments on the environmental analysis

The study contains neither an EIA nor a CIA.

However, the study does have a chapter on environmental considerations, in which impacts are described on Natura 2000 sites, noise, rivers, water courses and cultural heritage.
3.6. Characteristics of the transport demand scenario and its economic drivers

The transport demand scenario takes into account the following exogenous developments: population, GDP, GVA and trade/commodity flows. Exogenous trends were derived from data from the national statistical offices of each Baltic State, Eurostat and the UN. Passenger demand forecasts are driven by changes in the number of inhabitants and GDP per capita, whereas freight demand forecasts are determined by GDP growth. The reference infrastructure scenario underlying the appraisal results is not presented separately in detail.

Current transport services for all modes were assessed using a five point scoring system.

The study was carried out after the financial crisis. The applied GDP growth rates seem realistic.

Nevertheless, the results for passenger transport development are substantially higher and for freight transport modestly higher than in the COWI-study (COWI et al., 2007). This is hard to understand, because matrix information on the OD-flows is not provided in a comprehensive form. Furthermore, it is not clear which assumptions were made regarding the infrastructure provision for competing transport modes (car, air). As the population will decline, the forecasted growth of passenger transport would be due in the first instance by increased travel distances (change of destination) and increased preference for rail transport (change of modal split). However, the study does not give precise answers to these questions.

3.7. Investment cost and structure of financing

The estimation of construction costs is based on the CAPEX Unit Cost Methodology. To apply this approach, the whole route is divided into 27 segments of various lengths. The costs for land acquisition differ by type of territory (forest, field, swamps), major cities along the route, and villages.

Maintenance costs are estimated taking the following cost components into consideration:

- maintenance of the track
- maintenance of the signalling and telecommunication installations
- maintenance of the overhead line
- maintenance of surrounding areas.

56.3% of the project is assumed to be financed from various EU funds.

The Economic IRR is estimated at 9.3%.

The Financial IRR amounts to 0.5% from the perspective of the infrastructure manager and under the assumption that no EU contribution is made.
3.8. Cost developments over the life-cycle of the project

The investment and maintenance cost estimations are listed in the section above. Infrastructure operating costs were based on the maintenance cost components, whereas revenues from infrastructure charges were estimated based on demand forecasts. Access charges are determined on the basis of the EU document on the establishment of a single European railway area (2010/0253(COD)). The operating costs of operating companies are driven by fuel costs, labour costs, the total cost of rolling stock, overhead costs and track access. The cost figures of the two studies are not comparable because of different infrastructure alternatives and demand/operation figures.

Rail Baltica project summary of investment and cost

| Table C3-2: Project summary of Rail Baltica: COWI Feasibility Study (2007) |
|---|---|
| Aspect | Description |
| Project Title | Rail Baltica (wide gauge renewal) (Study financed by DG Regional Policy) |
| Countries / area | Poland, Lithuania, Latvia, Estonia |
| Mode(s) | Railways |
| Managing authority | Various for the different sections (e.g. National Ministries, railway operators), Mr Pavel Telička (European Coordinator) |
| Duration | Not applicable |
| Delay (mth) | Not applicable |
| Investment cost (m€) | EUR 0.98–2.37 billion (2006) |
| EC funding TEN-T (m€) | Underlying assumption: EU grants 60% of the total investment costs (TEN-T and cohesion funds) |
| EC funding Cohes. (m€) | Underlying assumption: EU grants 60% of the total investment costs (TEN-T and cohesion funds) |
| Funding agent 1 | Member States |
| Funding agent 2 | EU (cohesion fund and TEN-T fund) |
| Cost-benefit-analysis | COWI Consult |
| CBA ratio | 1.9-2.8 with high values of time; 40% lower with national VOT |
| Public y/n | y |
| EC share | 60% (TEN-T and cohesion funds) |
| EC share | 60% (TEN-T and cohesion funds) |
| Value (m€) | EUR 0.39-0.95 billion (2006) |
| Value (m€) | EUR 0.59-1.42 billion (2006) |
Update on Investments in Large TEN-T Projects

<table>
<thead>
<tr>
<th>Aspect</th>
<th>Description</th>
<th>Aspect</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transport scenario</td>
<td>Three investment scenarios; one reference scenario (forecast year: 2040 (2034))</td>
<td>Dated from</td>
<td>2005</td>
</tr>
<tr>
<td>Externality covered</td>
<td>Air pollution; CO₂ costs; accident costs</td>
<td>Ext. cost (m€)</td>
<td>EUR 246-421 million benefits (2006)</td>
</tr>
<tr>
<td>EIA</td>
<td>The study highlights main problems and conflicts caused by the proposed investments. Findings need to be studied in more detail in EIAs.</td>
<td>Public y/n</td>
<td>y</td>
</tr>
<tr>
<td>CIA</td>
<td>Impacts on CO₂ emissions are estimated</td>
<td>Public y/n</td>
<td>y</td>
</tr>
<tr>
<td>Financial analysis</td>
<td>Financial analysis carried out from the perspective of the following three agents:</td>
<td>Expected RoI</td>
<td>Economic IRR: 9.0-13.3%</td>
</tr>
<tr>
<td></td>
<td>• Infrastructure manager</td>
<td></td>
<td>Financial IRR (on own capital, perspective of infrastructure manager): 2.6-4.7%, under the assumption of 60% EU contribution for investment costs; without EU finance, none of the options are financially viable</td>
</tr>
<tr>
<td>Ex-post evaluation</td>
<td>Not applicable</td>
<td>Cost overrun (m€)</td>
<td>Not applicable</td>
</tr>
</tbody>
</table>

Source: own analysis.

3.9. Methodology and comments on the CBA and project selection

The Feasibility Study embraces an economic assessment (CBA approach) and financial assessment. It refers to the whole scope of the Rail Baltica corridor from Warsaw to Tallinn.

The economic assessment is based on a traditional CBA approach, following the recommendations in DG Regio’s Guide to cost-benefit analysis of investment projects, as well as recommendations of the HEATCO project. The elements of the applied CBA are as follows:

- Travel time savings (passenger)
- Carriage time savings (freight)
- User costs (passenger)
- User costs (freight)
- Investment costs (rail)
- Scrap value (rail)
- Change in operation and maintenance (road)
- Access charges by operators
- Net operation and maintenance on the rail line
- Net ticket revenues
- Net operation and maintenance for rolling stock
- Access charges for infrastructure managers
- Air pollution
- Climate change (CO2)
- Accidents

The financial assessment follows the recommendations outlined in DG Regio’s Guide to cost-benefit analysis of investment projects and focuses on cost and revenues from the perspective of three different agents:
- Infrastructure manager
- Operator of passenger trains
- Operator of freight trains

The considered cost and revenue elements of infrastructure managers are as follows:
- Investment costs (including scrap value)
- EU funding
- Access charging from operators
- Maintenance costs.

For the financial analysis from the perspective of operators of passenger (freight) trains, the following components are considered:
- Net ticket (tariff) revenue
- Net operating costs and maintenance costs of rolling stock
- Access charges to infrastructure manager.

In order to assess the robustness of the obtained results, sensitivity analyses are carried out.

The study does not intend to select a specific option, but rather to explore the feasibility of different options from a strategic point of view. It concludes with recommendations for three specific sections (Tallinn-Riga; Riga-Kaunas; Kaunas-Warsaw) which take investment costs, impacts on passenger and freight transport, and environmental issues into consideration.
3.10. Methodology and comments on the environmental analysis

The Feasibility Study contains neither an EIA nor a CIA.

However, the study highlights the main problems and conflicts caused by the proposed investment packages. The obtained findings need to be studied in more detail in EIAs conducted during the detailed design studies.

3.11. Characteristics of the transport demand scenario and its economic drivers

The Feasibility Study covers three investment scenarios for infrastructure developments along the Rail Baltica corridor and a reference scenario (forecast year: 2034). The infrastructure assumptions of the reference scenario are compiled on the basis of national investment plans. The assumptions in the investment scenarios are based on all the infrastructure changes of the reference scenario plus the investments related to Rail Baltica. The assumed infrastructure scenarios reveal heavy investments in the road network in all Baltic States and Poland.

Each infrastructure scenario features a common socio-economic scenario covering the main demand triggers: number of inhabitants, motorization, GDP per capita, GDP per economic sector and user costs for transport services. The socio-economic scenario is elaborated by the consortium by applying the results of EU funded projects (TEN-STAC, PRIMES, SCENES) and publications by the European Commission (“European Energy and Transport Trends to 2030”).

Transport demand forecasts are generated by the Vaclav model (passenger demand) and the NEAC (freight demand) model.

The study was carried out before the financial crisis. Therefore, from a current perspective, the applied GDP growth rates are too optimistic.

3.12. Investment cost and structure of financing

The investment costs are estimated on the basis of

- country-specific costs for land acquisition
- country-specific unit costs for track renewal (upgrade of an existing link to 120 km/h)
- unit costs to upgrade existing track to 120 km/h
- unit costs to upgrade existing track to 160 km/h
- new line (broad gauge)
- new electrified line (standard gauge)
- salaries.

The assumed unit costs were verified by a member of the UIC working group involved in regular updates of the report “Infracost – The Cost of Railway Infrastructure” (UIC, 2002).
Maintenance costs are estimated by considering the following cost components:

- maintenance of the track
- maintenance of the signalling and telecommunication installations
- maintenance of the overhead line
- maintenance of surrounding areas.

60% of the project is assumed to be financed from EU funds (TEN-T and cohesion funds).

The Economic IRR is estimated to be in the range of 9.0-13.3% (depending on the investment option).

The Financial IRR on own capital is estimated to be 2.6-4.7%, depending on the investment package. It is calculated for the perspective of the infrastructure manager, assuming that 60% of the investment costs are covered by EU budgets. Without EU financing, none of the options are financially viable.

3.13. Cost developments over the life-cycle of the project

The investment and maintenance cost estimations are listed in the section above.

Operating costs were considered on the basis of the maintenance cost components, whereas revenues were estimated on the basis of demand forecasts and applied access charges in Poland.
3.14. References

- EU-Consult (2011), Private Transport Market Stakeholders in the Area of Rail Baltica. RBGC. Warsaw, Poland.

- Malla Paajanen Consulting (online), The Rail Baltic project http://www.mallapaajanen.com/blog

- RBGC - Rail Baltica Growth Corridor (online) http://www.rbgc.eu/frontpage.html

- RBGC-Russia (online), RBGC Russia Rail Baltica Growth Corridor - Rail Baltica Growth Corridor. http://www.rbgc.eu/fi/rbgc_russia.html

- Saranen, J., ed (2010), *Intermodal transportation in emergency situations in the Gulf of Finland*. Lappeenranta University of Technology, Finland.

ANNEX 4. IRON RHINE

Table C4-1: Project summary Iron Rhine

<table>
<thead>
<tr>
<th>Aspect</th>
<th>Description</th>
<th>Aspect</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Title</td>
<td>Iron Rhine (Railway link Liers/BE – Rheydt/Mönchengladbach/DE)</td>
<td>TEN-T code</td>
<td>2007-EU-24090-S</td>
</tr>
<tr>
<td>Countries / area</td>
<td>Belgium, Netherlands (and Germany)</td>
<td>Start date</td>
<td>January 2007</td>
</tr>
<tr>
<td>Mode(s)</td>
<td>Rail</td>
<td>End date</td>
<td>December 2009 (reduced scope)</td>
</tr>
<tr>
<td>Managing authority</td>
<td>Infrabel (Belgian Rail Infrastructure Manager)</td>
<td>Duration</td>
<td>36 months</td>
</tr>
<tr>
<td>Included in TEN-T</td>
<td>2007 (part of priority Project 24)</td>
<td>TEN-T element</td>
<td>Comprehensive network</td>
</tr>
<tr>
<td>Investment cost (m€)</td>
<td>Preliminary studies: 5.26</td>
<td>Length (km)</td>
<td>162.3 km</td>
</tr>
<tr>
<td></td>
<td>Works: not determined (preliminary estimates up to over EUR 1 100 million)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EC funding TEN-T (m€)</td>
<td>Preliminary studies: 2.63</td>
<td>EC share</td>
<td>50% (studies)</td>
</tr>
<tr>
<td></td>
<td>(Source: http://inea.ec.europa.eu/download/project_fiches/multi_country/fichenew_2007eu24090s_final_1.pdf)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EC funding Cohes. (m€)</td>
<td>d.n.a.</td>
<td>EC share</td>
<td>d.n.a.</td>
</tr>
<tr>
<td>Funding agent 1</td>
<td>Value (m€) to be determined</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Funding agent 2</td>
<td>Value (m€) -</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4 variants considered</td>
<td>Public y/n</td>
<td>y</td>
</tr>
</tbody>
</table>
Figure C4-1: Iron Rhine

“Part of Priority Project 24, railway axis Lyon/Genova – Basel – Duisburg – Rotterdam/ Antwerpen, the "Iron Rhine" is a historic railway line that runs from the Port of Antwerp in Belgium through The Netherlands to Duisburg, Germany. This project concerns studies to reactivate the line in order to create a direct freight rail link for the Port of Antwerp to its hinterland connections).”

Background: The Iron Rhine railway line was built between 1868 and 1879. The Treaty of London between Belgium and the Netherlands had guaranteed Belgium the right of transit (by rail or canal) through Dutch territory. The Treaty of the Iron Rhine of 1873 provided for a 99-year concession. While parts of the line are still used for passenger and short-distance freight transport, transit freight trains between the port of Antwerp and the Ruhr area ceased operating in 1991. Since then, the “Montzen route” is predominantly used, which is about 50 km longer via Hasselt, Montzen and Aachen; an alternative route to the North is via the new Betuwe line. Nevertheless, Belgium has continually manifested its interest in reviving the Iron Rhine line for long-distance, cross-border freight transport. In 2000, the governments of Belgium and The Netherlands signed an agreement to carry out preliminary studies to reutilise the historic route and, in 2004, Belgium formally requested its reopening in view of Antwerp port’s growing importance for the Ruhr area in Germany. The 24 May

Update on Investments in Large TEN-T Projects

200518 ruling of the Permanent Court of Arbitration confirmed that the 1839 treaty still gives Belgium the right of transit through the Netherlands along the historic line. The ruling also recognises Dutch concerns regarding the line crossing the De Meinweg nature reserve that was classified as a national Park in 1994: the costs of a tunnel under the park would have to be borne by both parties. A traffic forecast was completed in 2007, followed by a CBA in 2009 (both studies were carried out with EU co-financing).19 No further studies have been carried out since 2009. The next step would be the signature of a memorandum of understanding by the governments of Belgium and The Netherlands, but there is no indication at present that negotiations are about to conclude. The Belgian authorities stated the following:

“During the last few years, in particular since the meeting between Belgian and Dutch Ministers on July 4th, 2011, there have been intensive negotiations between the administrations of both countries concerning the execution and funding of the Iron Rhine project. To a lesser extent, Germany has also participated when the discussions concerned the section on their territory or general decisions like electrification. These negotiations have led to a draft for a Memorandum of Understanding (MoU), to be signed between Belgium and The Netherlands. A few matters remain open for discussion, mainly regarding the VAT on works carried out on Dutch territory. The Netherlands want Belgium to pay VAT on the investments we will have to finance on their territory; to our view, based on an in-depth juridical advice, paying VAT would be in contradiction to the Treaty texts and international law on VAT. At the moment, the Belgian Minister of Public Enterprises and Secretary of State for Transport is waiting for the green light of our Council of Ministers to resume the formal negotiations with their Dutch colleagues. A preparatory contact between BE and NL Ministers is foreseen for early February 2014.”

“Once the MoU has been signed, trilateral negotiations with Germany will start. These should lead to a trilateral agreement or treaty. Subject to this trilateral agreement, an update has to be performed on the planning and duration of the construction. Based on current knowledge, the modernized line could be put into service 13 years after the trilateral agreement has been reached.”

Hence the project is on hold for the time being. It should be noted that it has not been included in the TEN-T core network.

4.1. Methodology and comments on the CBA and project selection

The cost-benefit analysis was carried out by a Belgian-Dutch consortium of consultants appointed by Electrabel, the SNCB infrastructure manager. The CBA report – TML/TNO (2009) – does not outline or comment on the general methodology of the appraisal. There is no reference to a binding national CBA methodology for Belgium or The Netherlands or to any other standard method such as RAILPAG, the Railway Project Appraisal Guidelines of the European Investment Bank. It is only at the level of individual CBA components that reference is made to research and policy publications. As the consortium members TML and TNO are well reputed Europe-wide as transport consultants, the methodology applied is EU

research based and can generally be considered state-of-the-art, notwithstanding certain weaknesses (for example the enumeration of taxes which are transfer payments, i.e. neutral in socio-economic terms).

In the course of our review, we have not identified any significant gaps. However, because the early stage of the project lacks important technical studies, we would tend to qualify this study as on a “prefeasibility” level. The study results do not reflect the impact of the economic and financial crises in Europe since 2008.

Besides a reference scenario, the CBA considers several project alternatives:

1. regarding the alignment:
 a) the rehabilitation of the historic Iron Rhine line between Lier (BE) and Rheydt (DE);
 b) the rehabilitation of the historic Iron Rhine line in Belgium and The Netherlands and a new alignment in Germany along the A52 motorway between the Dutch border and Rheydt;

2. regarding electrification:
 a) for the operation of diesel-powered trains only (no new electrification works)
 b) fully electrified line

The combination of these 2 x 2 solutions yields four alternative options. In addition, two alternative economic scenarios were considered that do not differ in their assumptions about economic growth, but only with regard to transport policies: the alternative economic scenario assumes additional taxation of all modes of transport as well as improvements in the costs and travel times for rail transport. This scenario is only applied in the case of the reference alternative and the historical route with diesel traction.

The identified and estimated external costs include:

- Emissions
- Noise
- Accidents
- External safety
- Recreation
- Vibrations
- Loss of living environment
- Landscape
- Ecology
- Soil and water

This selection of categories of external costs is satisfactory. The result of the CBA is clear: for all four project alternatives, the discounted net present value is significantly negative. More optimistic sensitivity runs do not reverse this result.

No other assessment approaches were applied. The question of a European added value of the project has not been considered.
A separate traffic forecast and a CBA have been carried out for the German section of the project\(^\text{20}\) with the alternatives of rehabilitating and upgrading the historical Iron Rhine route (21 km) or constructing a new route along the A52 motorway (28 km). The CBA methodology is the same as the German Federal transport infrastructure plan (Bundesverkehrswegeplanung); it is applied assuming that the Belgian and Dutch sections have been implemented. The main result is a cost-benefit ratio of 1.1 for the A52 alignment (estimated investment cost: EUR 483 million) and of 3.5 for the upgraded historical Iron Rhine route (estimated investment cost: EUR 150 million). The difference results of course from the higher investment costs and the longer route of the first alternative.

As the Iron Rhine project is the revitalisation of an existing railway line, a selection process is not relevant. The political choice will be whether or not to go ahead with the implementation or to postpone the decision to a much later point of time.

4.2. Methodology and comments on the environmental analysis

No environmental assessment has been carried out so far.

4.3. Characteristic of the transport demand scenario and its economic drivers

Three traffic forecasts carried out for the Iron Rhine project prior to the CBA are mentioned in the CBA report:

- Port of Antwerp EOS 2005 study (not available)
- Vervoerprognoses IJzeren Rijn by NEA/UA, April 2007
- Vervoerprognose IJzeren Rijn by TNO/TML, May 2007

The two forecasts arrive at similar transported freight volumes; the volumes forecast by NEA with the University of Antwerp are consistently somewhat higher than the TNO/TML forecasts.

For obvious reasons, the TNO/TML forecast was used in the CBA by the same consortium. The TNO/TML traffic forecast was elaborated in 2006, making use of the TRANSTOOLS model developed for the European Commission. TRANSTOOLS is a multi-modal transport network simulation and forecast model for land-based modes of transport, i.e. rail, road and inland waterways. As TRANSTOOLS uses statistical data for regions according to the EU NUTS classification, the port of Antwerp is part of the Antwerp region (this is a general weakness of the EU NUTS classification system for transport purposes, relating to all major ports in the EU). Because the port of Antwerp is the main single source of cargo for the Iron Rhine, more reliable results of the modelling exercise would have been obtained by separating the port from other regional transport demand generation. Apart from this, we maintain our earlier statement that “the TRANSTOOLS model is still not mature and does not generate reliable data for multi-modal transport planning”\(^\text{21}\).

For the CBA, an updated transport demand forecasting exercise was developed, again using the TRANSTOOLS model. The methodology and input parameters are described in the CBA report. Rail cargo is modelled separately according to train type (bulk, container, etc.). The main drivers of freight transport demand are the demographic and economic development in the vast hinterland of the Port of Antwerp, in particular in the relevant parts of Germany connected with intercontinental trade. Other factors are less relevant. The Iron Rhine would attract mainly cargo from the existing Montzen route and from road and inland waterways to a small extent.

In the CBA study, two scenarios were selected out of the many variants calculated in the preceding TNO/TML Iron Rhine traffic forecast study. These two scenarios are based on the combination of an economic scenario and a transport policy scenario.22

- Scenario 2A: This scenario has moderate economic growth and some moderate policy options derived from the European Commission’s transport plans.
- Scenario 2B: This scenario also has moderate economic growth. It has more extended transport policy options that assume further effects of the liberalization of the rail market in combination with a toll on European motorways.

The CBA does not contain a sensitivity analysis with alternative socio-economic growth parameters. There have been no recent updates of the transport demand and traffic forecast to reflect the impact of the economic and budgetary crises in Europe. An update is not necessary at the present stage of the project.

4.4. Investment cost and structure of financing

The investment costs have been estimated individually for each country for the CBA. The investment costs in €2007 prices are summarised in Table C4-2 below:

<table>
<thead>
<tr>
<th></th>
<th>Total investment costs (in million €2007)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iron Rhine – historical route</td>
<td></td>
</tr>
<tr>
<td>non-electrified</td>
<td>588</td>
</tr>
<tr>
<td>Electrified</td>
<td>707</td>
</tr>
<tr>
<td>Iron Rhine via A52</td>
<td></td>
</tr>
<tr>
<td>non-electrified</td>
<td>649</td>
</tr>
<tr>
<td>Electrified</td>
<td>751</td>
</tr>
</tbody>
</table>

The authors mention that, according to DB Netz, the Deutsche Bahn infrastructure manager, investment costs in Germany only could be around EUR 900 million rather than

22 Annual GDP growth assumptions by country are shown below (copied from TML/TNO (2009), p. 179); they are taken from the EC publication: European energy and transport outlook 2030 – update 2005:

<table>
<thead>
<tr>
<th>Country</th>
<th>2020-2005</th>
<th>2030-2020</th>
<th>2030-2005</th>
</tr>
</thead>
<tbody>
<tr>
<td>BE</td>
<td>2.15%</td>
<td>1.66%</td>
<td>1.03%</td>
</tr>
<tr>
<td>NL</td>
<td>1.34%</td>
<td>1.45%</td>
<td>1.74%</td>
</tr>
<tr>
<td>DE</td>
<td>1.75%</td>
<td>1.03%</td>
<td>1.46%</td>
</tr>
<tr>
<td>Total EU25</td>
<td>2.30%</td>
<td>1.63%</td>
<td>2.03%</td>
</tr>
</tbody>
</table>
the EUR 480 million quoted as part of the electrified route via the A52, i.e. EUR 420 million higher. Only the results of the cost estimates are shown in the CBA report; the calculations cannot be verified.

- As the investment cost estimates are only preliminary, no financial return can be derived.
- It is premature to consider funding options.

The investment figures in Table C4-3 for Belgium are taken from the most recent TENtec database; they seem to be outdated (the figures for 2010 are marked “estimated” and those for 2011 are marked “foreseen”).

<table>
<thead>
<tr>
<th></th>
<th>State budget</th>
<th>TEN-T contribution</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total cost</td>
<td>818.59</td>
<td>3.26</td>
<td>821.85</td>
</tr>
<tr>
<td>Up to 2008</td>
<td>5.54</td>
<td>2.71</td>
<td>8.25</td>
</tr>
<tr>
<td>2009</td>
<td>0.61</td>
<td>0</td>
<td>0.61</td>
</tr>
<tr>
<td>2010</td>
<td>0</td>
<td>0.55</td>
<td>0.55</td>
</tr>
<tr>
<td>2011</td>
<td>3.92</td>
<td>0</td>
<td>3.92</td>
</tr>
<tr>
<td>2012-13</td>
<td>41.08</td>
<td>0</td>
<td>41.08</td>
</tr>
<tr>
<td>2014-2020</td>
<td>767.45</td>
<td>0</td>
<td>767.45</td>
</tr>
</tbody>
</table>

Source: TENtec.

4.5. Cost developments over the life-cycle of the project

Not applicable.

4.6. Conclusions to be drawn

The Port of Antwerp is one of the main proponents of the project. For Germany, the project is of major importance because of shorter rail transport distances and times, in particular for the Rhine-Ruhr area and the Port of Duisburg.

All the studies carried out for the Iron Rhine project are preliminary. The Iron Rhine project has not yet been submitted to the EU for TEN-T funding. The Iron Rhine route is not part of the core network. This limits the co-funding level by the European Union.
4.7. References

<table>
<thead>
<tr>
<th>Year</th>
<th>Type</th>
<th>Title</th>
</tr>
</thead>
</table>
ANNEX 5. HIGH-SPEED STUTTGART-ULM RAIL PROJECT

5.1. Project definitions and project summaries

5.1.1. Federal project: Stuttgart-Augsburg railway link

The Stuttgart-Augsburg federal railway link is a project of the Federal Transport Investment Plan and was re-evaluated by the Federal MoT in 2010. It comprises the upgrading of the rail link between Augsburg and Ulm (v_{max}=200 km/h), constructing a new HSR link between Ulm and Wendlingen (v_{max}=250 km/h) and implementing the HSR/intercity link between Wendlingen, Airport Stuttgart and the new Stuttgart Central Station. The investment costs are calculated as being EUR 3,705 million, consisting of:

- Augsburg-Ulm EUR 251 million
- Ulm-Wendlingen EUR 2,890 million
- Intercity share of Stuttgart 21 EUR 564 million

For this project a CBA has been prepared by Intraplan and BVU (2010) for the Federal MoT, the results of which are given in Table C5-1

Figure C5-1: Railway project Stuttgart-Augsburg

![Source: DB Netze.](image)
Table C5-1: Project summary federal railway link Stuttgart-Ulm-Augsburg

<table>
<thead>
<tr>
<th>Aspect</th>
<th>Description</th>
<th>Aspect</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Upgrade Augsburg-Ulm (200 km/h)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>New HSR Ulm-Stuttgart (250 km/h)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Countries / area</td>
<td>Germany</td>
<td>Start date</td>
<td>2012</td>
</tr>
<tr>
<td>Mode(s)</td>
<td>Rail</td>
<td>End date</td>
<td>2021</td>
</tr>
<tr>
<td>Managing authority</td>
<td>DB Projekt Stuttgart-Ulm GmbH</td>
<td>Duration</td>
<td>10 years</td>
</tr>
<tr>
<td>Included in TEN-T</td>
<td>Part of PP17 included in 2004</td>
<td>Delay (mth)</td>
<td></td>
</tr>
<tr>
<td>Investment cost (m€)</td>
<td>3 705</td>
<td>Length (km)</td>
<td>155 km</td>
</tr>
<tr>
<td>Funding 1</td>
<td>Federal budget</td>
<td>Value (m€)</td>
<td>3,445</td>
</tr>
<tr>
<td>Funding 2</td>
<td>State budget, pre-finance of 950 mill. €</td>
<td>Value (m€)</td>
<td>(950)</td>
</tr>
<tr>
<td>Funding 3</td>
<td>Deutsche Bahn AG</td>
<td>Value (m€)</td>
<td>150</td>
</tr>
<tr>
<td>Cost-benefit-analysis</td>
<td>Standard CBA of Federal Transport Investment Planning for parts under federal responsibility</td>
<td>CBA ratio</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Public y/n</td>
<td>Y</td>
</tr>
<tr>
<td>Transport scenario</td>
<td>Intraplan/BVU on behalf of the MoT</td>
<td>Dated from</td>
<td>2010</td>
</tr>
<tr>
<td>Externality Covered</td>
<td>Yes</td>
<td>Ext. cost (m€)</td>
<td>246</td>
</tr>
<tr>
<td>EIA</td>
<td>Air pollution, noise, climate</td>
<td>Public y/n</td>
<td>(Y)</td>
</tr>
<tr>
<td>CIA</td>
<td>Included in EIA</td>
<td>Public y/n</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>FIRR / SDR</td>
<td></td>
</tr>
<tr>
<td>Ex-post evaluation</td>
<td></td>
<td>Cost overrun (m€)</td>
<td>-</td>
</tr>
</tbody>
</table>

Source: Own compilation.
5.1.2. Mixed federal/regional/city railway project Stuttgart-Ulm

The railway project Stuttgart-Ulm, which is the most heavily debated rail project in Germany, consists of the HSR link Ulm-Wendlingen (the major section of the federal project Stuttgart-Augsburg, see above) and the mixed federal/regional/city project Stuttgart 21. The Ulm-Wendlingen link was evaluated using a standardised CBA within the federal project Stuttgart-Augsburg in 2010 (see section 1.1). The urban rail links (without the planned railway stations) were evaluated in 2006 using the standardised evaluation scheme for urban transportation projects. This evaluation scheme uses a multi-criteria approach, of which a CBA is one element. It is not, however, comparable to the federal evaluation approach, to the extent that the regional/urban CBA-results cannot be added to the federal results. A macro-economic evaluation has been prepared for the two constituent parts of the comprehensive Stuttgart-Ulm railway project on behalf of the State Ministry of Interior Affairs by IWW et al. (2009). It indicates that the Stuttgart-Ulm railway project is a most complex project, consisting of various components, evaluated by different methodologies for different public and private bodies. Therefore we will start by describing the historical background of the project, beginning with the original ideas of the promoters in the early 90s, followed by an explanation of the reasons for the increasing resistance of particular stakeholders before and after the start of the construction work.

Figure C5-2: The Stuttgart – Ulm railway project
Table C5-2: Project summary Railway Project Stuttgart-Ulm

<table>
<thead>
<tr>
<th>Aspect</th>
<th>Description</th>
<th>Aspect</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Title</td>
<td>1. New HSR Ulm-Wendlingen (250 km/h) 2. Stuttgart 21 (Intercity, regional, urban links, 3 stations incl. a new underground Central Station & a new Technical Service Station)</td>
<td>TEN-T code</td>
<td></td>
</tr>
<tr>
<td>Countries / area</td>
<td>Germany</td>
<td>Start date</td>
<td>2010</td>
</tr>
<tr>
<td>Mode(s)</td>
<td>Rail</td>
<td>End date</td>
<td>2021</td>
</tr>
<tr>
<td>Managing authority</td>
<td>DB Projekt Stuttgart-Ulm GmbH established in 2013</td>
<td>Duration</td>
<td>11 years</td>
</tr>
<tr>
<td>Included in TEN-T</td>
<td>Included in TEN-T as PP17 in 2004 (only intercity parts)</td>
<td>Delay (mth)</td>
<td></td>
</tr>
<tr>
<td>Investment cost (m€)</td>
<td>9 390</td>
<td>TEN-T element</td>
<td>Core network</td>
</tr>
<tr>
<td>Length (km)</td>
<td>70+30 km</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Funding 1</td>
<td>Federal budget</td>
<td>Value (m€)</td>
<td>3 240</td>
</tr>
<tr>
<td>Funding 2</td>
<td>State budget (of which 950 are pre-finance)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Funding 3</td>
<td>Region and City of Stuttgart</td>
<td>Value (m€)</td>
<td>2 110</td>
</tr>
<tr>
<td>Funding 4</td>
<td>Deutsche Bahn AG</td>
<td>Value (m€)</td>
<td>390</td>
</tr>
<tr>
<td>Funding 5</td>
<td>Stuttgart Airport</td>
<td>Value (m€)</td>
<td>3 450</td>
</tr>
<tr>
<td>Cost-benefit-analysis</td>
<td>Standard CBA of Federal Transport Investment Planning</td>
<td>CBA ratio</td>
<td>1.5</td>
</tr>
<tr>
<td>Transport scenario</td>
<td>Intraplan/BVU on behalf of the MoT IWW et al. on behalf of the State Min.</td>
<td>Public y/n</td>
<td>Y</td>
</tr>
<tr>
<td>Externality covered</td>
<td>In the single parts</td>
<td>Ext. cost (m€)</td>
<td></td>
</tr>
<tr>
<td>EIA</td>
<td>For the single project parts</td>
<td>Public y/n</td>
<td>(Y)</td>
</tr>
<tr>
<td>CIA</td>
<td>Included in EIA</td>
<td>Public y/n</td>
<td>(Y)</td>
</tr>
<tr>
<td>Financial analysis</td>
<td>Applied for the public budget</td>
<td>Payback / EIRR</td>
<td>55 years for 2.5% interest rate</td>
</tr>
<tr>
<td>Ex-post evaluation</td>
<td></td>
<td>FIRR / SDR</td>
<td></td>
</tr>
<tr>
<td>Source: Own compilation</td>
<td></td>
<td>Cost overrun (m€)</td>
<td>-</td>
</tr>
</tbody>
</table>
The Stuttgart-Ulm-Augsburg intercity link is part of the TEN-T corridor P17 (TEN-T definition of 2004) and TEN-T core network corridor 9 (Rhine-Danube, definition of 2013). In the following we briefly summarise the characteristics of the Stuttgart-Ulm railway project. Comprehensive knowledge of the history and the specifics of the project are needed to understand the substantial debate and the protest movements surrounding it. Consequently we provide more detailed information in an appendix.

5.2. Summary of impact assessment and evaluation

5.2.1. Methodology and comments on the CBA and project selection

a) Stuttgart-Augsburg railway project

The Stuttgart-Augsburg link, including its major component, Stuttgart-Ulm, was evaluated using the standardised CBA methodology of the Federal Transport Investment Planning. This methodology comprises 9 benefit criteria (including, amongst others, time, operational costs, infrastructure maintenance and external costs), which are measured according to the with/without principle for a project. Furthermore, the methodology requires that the projects are checked with respect to their spatial impacts and environmental risk. For these criteria non-monetary scoring is applied.

Transport input data are generated by a multi-modal transport forecast for passenger and freight transport. The overall assessment approach is consistent with the EU assessment guidelines. The large number of criteria, which grows even more complex through the addition of many sub-criteria, leads to the problem that several criteria/subcriteria are measured through similar impact indicators, predominantly by transportation time or cost. Although small time savings are partly eliminated by a slack function the problem still remains that relatively small time savings are multiplied by large transportation figures, particularly in road transport, such that monetised time savings dominate the picture of CBA. Due to the double counting of time savings in several criteria the benefits can grow large with the result that the German CBA produces outcomes which cannot be compared to private business profitability rates. This means that high benefit-cost ratios - of 10 and more - can occur such that a threshold value of 3 (in the last plan even 4) had to be applied to adjust the investment programme to the available public funds.

The benefit-cost ratio of 1.5 of the project seems modest but one has to bear in mind that the time savings for many user groups are comparatively large and can substantially affect the activity programmes, generating wider economic impacts.

b) Urban public transport links of Stuttgart 21

Urban components of the overall investment have been evaluated by the standardised evaluation method for public urban transport projects (developed by the University of Stuttgart and Intraplan (2006)). This method clusters the measured impacts of a project into

- Monetary effects
- Effects which can be monetised
- Non-monetary effects.
The first two impact categories are summarised by a CBA for which the threshold is set > 1.

c) Stuttgart-Ulm Railway project

The Stuttgart-Ulm railway project, which consists of the Ulm-Wendlingen HSR link and the Stuttgart 21 mixed federal/regional/urban project (exact definition given in the appendix) has been evaluated with a macroeconomic approach by IWW et al. (2009), in a study launched by the State Ministry of Interior Affairs. The focus was on the wider economic benefits as the standardised CBA methods had been applied to the federal and urban components with a positive result. Two methodologies were applied: firstly a regional production function was constructed in which an accessibility indicator was integrated together with labour and capital production factors. The parameters of this function were estimated with a statistical cross section analysis for all EU NUTS 3 regions plus Norway and Switzerland. Secondly a regional “quasi production function” was defined with regional potential factors as explanatory variables. Regional infrastructure quality, education level, environmental quality and cultural attractiveness were defined as potential factors and estimated with a cross section analysis for the NUTS 3 regions. Regions for which the actual GVA was greater than the potential GVA were investigated for overused potential factors. This was designed to identify regions for which infrastructure quality caused a bottleneck in development. The second methodology led to lower estimated additional regional GVA and additional employment induced by the transport investment. Additional aggregated GVA for Baden-Württemberg amounted to between EUR 440 and 530 million per year after the realisation of the project, with an additional employment of 8,000-9,500 permanent jobs. The impacts of the alternative use of 106 ha of land, currently used by the terminal station and its access links, was estimated to deliver 2,600 permanent jobs. According to the consultant Srf, at Vienna University, this is an additional effect, while consultant IWW, at Karlsruhe University, argued that this effect is a part of the overall estimated impacts so that adding it up would lead to double counting.

5.2.2. Methodology and comments on the environmental analysis

EIA, but not SEA, has been applied to the two project components separately. External costs of the environment have been considered in the standardised evaluations for the two project components. VWI, Technical University of Stuttgart, estimated that the climate impact for the comprehensive Stuttgart–Ulm railway project resulting in a saving of 177,000 tons of CO₂ per year. A full CIA has not been carried out.
5.2.3. **Characteristics of the transport demand scenario and its economic drivers**

Transport demand scenarios have been performed

- for the federal intercity/HSR project Stuttgart-Augsburg by Intraplan and BVU (2010)
- for the regional and urban transport links by VWI (2006)
- for the comprehensive railway project Stuttgart-Ulm by IWW et al. (2009).

For the federal project different assumptions have been tested:

- realisation/non-realisation of a competing network project,
- lower transport development (-15% of original transport figures due to the economic crisis).

No alternatives were investigated for the regional and urban project components after the principle decision in favour of the project was made, and neither a sensitivity nor a risk analysis have been performed. The third comprehensive project has not been analysed for alternative transport developments, e.g. upper, middle and lower values of critical parameters. The impacts of the economic crisis have been considered and a sensitivity analysis has been performed for alternative investment costs.

5.2.4. **Investment cost and structure of financing**

Investment costs have been estimated by Deutsche Bahn AG. For the Stuttgart-Ulm railway project these estimates showed a dynamic increase:

- estimate for the 2009 financial agreement: EUR 3 billion for Stuttgart 21 and EUR 2.1 billion for the Wendlingen-Ulm HSR link; financial reserve of EUR 1.5 billion.
- estimate at the end of 2009: EUR 4.5 billion for Stuttgart 21 and EUR 2.89 billion for the Wendlingen-Ulm HSR link.
- estimate at the end of 2012: EUR 6.5 billion for Stuttgart 21 including financial reserves and EUR 2.89 billion for the Wendlingen-Ulm HSR (EUR 3.2 billion including escalation/inflation).

In addition to these costs, “political costs” of about EUR 300 million have occurred through the construction delay. Therefore the recent cost estimate for the comprehensive Stuttgart-Ulm project is EUR 9.4-9.7 billion.

The federal part of the project, the Wendlingen-Ulm HSR link, is financed by the Federal Government, the State of Baden-Württemberg (pre-finance to achieve an earlier start), the Deutsche Bahn AG and the European Commission (EUR 101.5 million for the budget 2007-2015).

The regional/urban part, Stuttgart 21, is financed by the Federal Government, the State of Baden-Württemberg, the city of Stuttgart, the Association of Stuttgart regions, the Airport Stuttgart Company and Deutsche Bahn AG. EU co-finance for the budget 2007-2015 is EUR 114.5 million. Detailed figures are given in the appendix. Until now no agreement has been achieved with respect to financing costs additional to those of the 2009 financial agreement.
The study of macroeconomic impacts was carried out under the assumption that the total cost of the project was likely to be EUR 5.1 billion. Assuming this, the pay-back period for the public capital investment was calculated to be 20 years with a real interest rate of 3.5%, resulting in a forecasted macroeconomic impact of EUR 440 million of GVA per year. This was evaluated as a positive performance for a large scale public project. After the substantial changes to cost calculations, increasing the cost budget from EUR 5.1 to 9.4 billion, calculations have been revised for the communication bureau of the Stuttgart-Ulm project. These show that an investment of this magnitude of cost can only pay back if the real interest rate is below 3%. For instance, if the real interest rate is fixed at 2.5% then the pay back period will be about 55 years.

This raises the question of the appropriate social discount rate. Before the financial crisis, relatively high economic growth rates were expected, giving rise to higher rates of social discount. After the crisis the growth expectations for industrialised countries have decreased. Furthermore, there are economic arguments suggesting that long-term environmental benefits of projects should not be discounted. If such considerations are accepted then the Stuttgart-Ulm project would still be economically viable in the long run.

5.2.5. Conclusions to be drawn

The Stuttgart-Ulm railway project is highly complex because of (i) the multiple and interdependent impacts for intercity, (ii) regional and urban transport, (iii) the technical requirements in topographically and geologically difficult areas, (iv) the distributed planning competences and (v) financial responsibilities. It has a long planning history which reveals that the specification of the project design was already determined in an early phase while ruling out realistic alternatives at a time when the knowledge base was still incomplete. A single concept was pursued after the decision on Stuttgart 21 in 1996 with the primary concern of guiding the project through all parliamentary barriers and establishing the partnerships for finance. While all parliamentary decisions have been taken with a large majority, due to the support of the Christian Democratic, Liberal and Social Democratic parties, there was a growing opposition, which tried to bring in constructive suggestions for project change at the beginning of the planning process. These expanded into massive protest movements when the construction work started in 2010. Although a “referendum” of Baden-Württemberg’s citizens (in the legal sense it was an opinion survey) held in autumn of 2011, resulted in an unexpectedly high endorsement of the project (59% in favour), the project is still under scrutiny by the now ruling Green Party, opposing NGOs and informal stakeholder groups.

The strengths and weaknesses of the project from the viewpoint of the consultant team are summarised below.

Strengths

(1) The Stuttgart-Ulm railway project has been treated as an integrated and comprehensive project by the Baden-Württemberg (BW) state authorities from the beginning. Fragmentation has been avoided and synergetic effects have been considered.

(2) All economic evaluations of the project components were positive based on the configuration of figures, including financial figures, of 2009/2010.

(3) The project generates a step-change of attractiveness for regional and intercity passenger transport and increases the capacity for freight transport.
The project provides the opportunity for city development in the central city area by using the 106 ha of land occupied by the terminal station as a through-bound underground station.

Financial agreements have been made between a number of involved parties on the public and semi-private side (publicly owned private enterprises).

A responsible project company was established in 2013.

The project is integrated in the context of European TEN-T network planning and is a part of TEN-T corridors 2004 and TEN-T core network corridors 2013.

Public information has been provided in the form of an exhibition in the tower of the main entrance building of Stuttgart central station ("Turmforum") since 1998.

Weaknesses

1. After the decision was taken on Stuttgart 21 in 1996, no alternative configurations have been investigated by federal or state authorities.

2. Planning was not prepared in sufficient detail to generate reliable figures on necessary actions (e.g. groundwater management, rough reference cost values for construction work). This resulted in very optimistic figures being generated on project costs.

3. Project costs have had to be re-estimated several times, starting with EUR 5.1 billion in the financial agreement of 2009 and continuing with the current estimate of EUR 9.4-9.7 billion.

4. Evaluation of the project was inconsistent and dependent on the planning competence of the main partners. There was no integrated approach to evaluation of the whole project with a standard CBA. A macroeconomic evaluation has been performed focusing on the wider economic benefits which is helpful as an additional element of evaluation but should not be a substitute for a standard CBA.

5. There was no integrated approach for financial analysis because the leading company Deutsche Bahn AG insisted on their status as a private stockholding company and did not allow inspection of their private financial figures. A project company was established three years after construction work started, which seems much too late.

6. The public authorities focused primarily on the formal administrative challenges and on preparing the complex agreements with the involved partners. They failed to continuously inform other stakeholders and the public.

7. Interested stakeholder groups have not been integrated and their suggestions concerning alternative configurations of the central station, and better environmental integration and design according to security and social requirements have not been taken up.

8. Deutsche Bahn AG did not prepare detailed operational schedules, arguing that such plans would be made after the decision on investments. This generated massive criticism on the presumed capacity increase, and well founded warnings with respect to potential bottlenecks were expressed by the project opponents.

The opponents’ argument that there will be no benefits for freight rail transport will be treated in the appendix. References will be given at the end of the appendix.
Appendix 1: Background information on the Stuttgart - Ulm railway project

A1. History of the Stuttgart Central Railway Station and the Stuttgart-Ulm railway link

A1.1 History of the Stuttgart Central Railway Station and present situation

The first Stuttgart Central Station was established with four rail tracks in 1845 together with the first railway links in the former Kingdom of Württemberg to the North, South and East. It was located in the middle of today’s city centre and was a barrier to the development of the city in the early 20th century. Against the background of rapidly increasing railway traffic the decision was taken in 1907 to move the Central Station to another location and to increase its capacity. A number of alternatives were investigated, for instance to move the station to Bad Cannstatt (4 km from the present location with much easier access) or to construct a through-bound station with underground access; the City of Stuttgart is in a difficult topographical location at the bottom of a valley. Finally it was decided to construct a terminal station outside the city gate (“Königstor”) and to remove the city gate. The famous architects Bonatz and Scholer were charged with the design of the buildings for a new Central Station with 16 railway tracks. The first part was opened in 1922 and the second part in 1928. The buildings were partly destroyed in World War II and re-constructed according to the original design. The development of the city road system around the downtown area separated the station from the city centre, visually and physically. This has been criticised by city planners but the station building of Bonatz and Scholer was nevertheless regarded an architectural master piece.

The terminal station was constructed in a park area comprising a part of the castle gardens and a part of the Rosenstein Park with a land area of a total of 106 ha. However, the access rail links to the station further dissected the park area and the increasing traffic on the access links, including the railway bridge crossing the river Neckar between the Central Station and Bad Cannstatt, caused pollutant emissions and noise intrusion (see Figure C5-3). But such environmental considerations played only a small role in the 1920ies and 1950ies. A terminus was also regarded a good operational solution because the terminals in large cities were used for changing locomotives and personnel. The steam locomotives used at that time needed refilling with water and coal such that changing locomotives was a necessary operational activity and the waiting time for passengers caused by the change of locomotives and drivers did not appear to be a problem, particularly for Stuttgart where most of the passengers started or ended their intercity journey (see footnote 2).

Stuttgart Central Station is currently equipped with 16 tracks at-grade and 2 underground tracks for the S-Bahn. The number of rail passengers is about 240 thousand per day or 87 million per year. Although the station is located in a corridor between Frankfurt and Munich, the share of intercity transit and passengers who change trains is only around 30%, while 70% of the passengers start or terminate their intercity rail trip in the Stuttgart region. Therefore the interconnection with the regional and urban transport systems is very important. In this regard the Central Station is well integrated into the regional, S-Bahn,

23 When the decision was taken in favour of a dead-end station in the 1920s, this share was as high as 95%.
and U-Bahn systems such that a change to these systems is possible within or close to the station area ("Klett-Passage").

Figure C5-3: Noise emissions alongside the railway access tracks to Stuttgart Central Station

Source: Deutsche Bahn AG.

A1.2 History and present state of the Stuttgart-Ulm railway link

The Stuttgart-Ulm link, with a length of 94 km, was part of the so-called “Eastern railway corridor” between Heilbronn, Stuttgart, Ulm and the Lake Constance. It was opened in 1850 with one track and in 1862 for two tracks. It was electrified in 1933 and extended to 4 tracks in the Stuttgart region up to Plochingen. In 1970 the Stuttgart-Plochingen link was one of the busiest railway corridors in Germany with a traffic volume of 430 trains per day. The traffic volume was also high on the link between Plochingen and Ulm, with about 300 trains per day. A major barrier to modernisation was and still is the steep gradient between Geislingen and Amstetten ("Geislinger Steige") to climb the Swabian Alb (582 m of altitude with a gradient of 22.5 o/oo).

In the initial decades, passenger trains had to be pulled and pushed by two locomotives. This is still the case for freight trains today. The maximum speed at the “Geislinger Kurve” is 70 km/h because of the narrow curvature (radius of 278 m). Therefore the travel time between Stuttgart and Ulm is 60 min. by IC and 55 min. by ICE trains and the average speed is 94 or 102 km/h, respectively, which is a very low standard for intercity rail transport.

A2. History of the plans for a new Stuttgart Central Station and a high-speed Stuttgart-Ulm link

In contrast with other countries the planning competence in Germany is with the Federal Government for the federal railway network and with the Federal States for railway stations and interconnections between federal, regional and local networks. Therefore it was natural that the two projects be planned by different authorities. There is, however, a strong interface between them and the macroeconomic evaluation study treated the two major components as one integrated project.
A2.1 New Stuttgart Central Station and access links (Stuttgart 21)

Discussion of a new Central Station in Stuttgart was initiated in 1988 by a study by Prof. Heimerl (University of Stuttgart) who suggested constructing a new intercity railway station under the existing terminal station and to use the old station after re-designing it for regional and local trains. Heimerl planned 4 tracks for intercity trains with the associated underground access links according to the so-called Zürich model. In this model the planners had developed a similar concept for separating the operations of intercity and regional/local trains. Such a model provides a good interconnection between both local and intercity trains for passengers, and the possibility of synchronised time tables.

At the same time a number of alternatives have been discussed, for instance to extend the existing terminal station or to move the Central Station to the north (Rosenstein). The latter was a low cost solution with a connection to the existing long-distance railway line (no connection to Stuttgart airport). However, like the Heimerl model it did not meet the visions of city politicians and planners who were interested in re-designing the whole station area and in re-structuring the land-use in the inner part of the city because the central city development was encroaching upon the station area.

The city of Stuttgart strongly promoted the idea of building a completely new Central Station under ground (not only the intercity part); after removing the terminal station and its access links, an area of 106 ha would be available for further developing the city centre. Influential real estate agents supported this idea and promised that a substantial part of the costs could be recovered by selling the land to investors. The costs of the station and its access links were calculated at EUR 2.5 billion in 1995 while the revenues from land sales were estimated at EUR 1.1 billion. Furthermore, Deutsche Bahn AG expected high cost savings for re-investment of the ramps and switches as well as for signal control installations in front of the station, which would become necessary in the case of no-investment into a re-design of the station. Framework agreements were signed on that basis between the public partners and the Deutsche Bahn AG. These later became relevant when project opponents went to court.

Deutsche Bahn AG (which was established in 1992 as a private stock holding company owned by the Federal State) originally agreed with the plan to build an underground station and acted as partner for the framework agreements. After a change of CEO in 1997 the company changed its position, finding the project too expensive, and stopped the planning process. It was also found that the Stuttgart-Ulm HSR link did not have first priority. A further change of CEO in 1999 lead to a revival of the project after the state of BW had agreed to contribute to financing the project. Opponents of the project suspected that the BW state government had influenced the positive decision by the Deutsche Bahn by offering favourable conditions for a long-term contract on regional transport service. Nevertheless, the poor situation for the public budgets at the federal and state level caused a three year-phase of financial negotiations which ended with the signing of a financial agreement between 6 partners in 2009: Federal Government, BW State Government, City of Stuttgart, Association of Communities of the Stuttgart Region, Stuttgart Airport Company and Deutsche Bahn AG.

While the costs were estimated at EUR 3 billion in early 2009, the agreement already predicted an upper limit of EUR 4.5 billion. This became the target cost figure shortly afterwards following a revision of cost estimates at the end of 2009. Three years after the
start of construction in January 2010 the cost estimation was revised again to EUR 6.5 billion which includes all costs of delays caused by the interruption of project works in 2010/2011. The increase is, however, primarily caused by a more detailed and careful cost analysis of Deutsche Bahn AG.

Box A1: Chronology of the planning of Stuttgart 21

- Study by Prof. Heimerl: 1988
- Official presentation of project idea: 1994
- Agreement of partners (Fed., State, City, Region, Deutsche Bahn AG): 1995
- Start of planning process: 1996
- 1997 Central Station: Decision of a jury in favour of the design of architect Christoph Ingenhoven
- Interruption by DB AG 1997 after new assessment
- Resuming negotiations by the end of 1999
- Agreement on pre-financing by the BW State, 2001
- Start of legal approval process in 2001, end in 2006 for relevant parts
- Agreement of Federal Government to co-fund 2005
- Negotiations between all partners on finance 2006-09
- Revision of cost estimates Nov. 2009; estimate of financial needs: EUR 4.5 billion incl. a financial reserve for risks, corresponding to the upper limit of the financial agreement
- Start of construction work Jan 2010
- Interruptions 2010/2011
- Revision of cost estimate in December 2012: EUR 6.5 billion incl. risk excl. political costs

A2.2 HSR link between Stuttgart and Ulm

Because of the poor service quality of the Stuttgart-Ulm link the Federal Transportation Investment Plan of 1985 had foreseen an HSR connection Stuttgart-Ulm to complement the HSR link Mannheim-Stuttgart, which was under construction at the time (opened in 1991). Deutsche Bahn AG favoured a combined solution for passengers and freight (as had been planned for the first German HSR links of Hanover - Würzburg and Mannheim – Stuttgart), named K-variant after the name of its developer, DB engineer Prof. Ernst Krittian). In contrast to this K-variant, Prof. Heimerl from the Technical University of Stuttgart presented a plan (so-called H-variant) in 1988 to construct an HSR solely for passenger and light freight transport, alongside the existing motorway with fewer tunnels and bridges but accepting much higher gradients (up to 25 o/oo).

In 1992 the BW State Government and Deutsche Bahn AG decided in favour of the H-variant because it appeared to be a much less costly and less risky solution. This is because the Swabian Alb consists geologically of limestone formations which are perforated by underground creeks and caverns such that it provides high challenges and risks for engineering of tunnels. The H-variant minimises the length of tunnels in these geologically difficult areas and follows the motorway for the sections at-grade such that it also
minimises environmental intrusion. The disadvantage was the inability to operate heavy freight trains on the HSR link. This did not appear to be too serious after the experiences of the two first combined German HSR links which were not encouraging. Furthermore, the link Stuttgart-Munich does not lie in a busy rail freight corridor.

Although the HSR link is a project of the Federal State, the State of BW has agreed to pre-finance the project so that it could be started earlier than indicated by the federal budget plans. The process of legal approval began in 2006 and is still continuing for some sections. Nevertheless construction works started in 2012 and major tunnel works are being prepared at the beginning of 2014.

The costs of the project were planned at EUR 2 billion in the financial agreement of 2009 which was increased in 2012 to EUR 2.89 billion or EUR 3.2 billion including inflation. As this estimate was provided before the main tenders were processed it is unclear whether this can be regarded as the upper limit, particularly given the difficult geological area.

A2.3 Project Management Company

Against the background of the dramatic cost evolution Deutsche Bahn AG established a new project management company in August 2013. The “DB Projekt Stuttgart-Ulm GmbH” will be responsible for both project parts and is expected to co-ordinate, improve and simplify the complex planning processes and streamline the risk and contract management.

A3. Components of the Stuttgart-Ulm railway project in more detail

A3.1 Stuttgart 21

The Stuttgart-Ulm project consists of two main components: Stuttgart 21 (S 21) and the Wendlingen-Ulm HSR link. The S 21 component is illustrated in Figure C5-4 and consists of the following sub-components:

- a new through-bound underground central railway station
- changed and upgraded regional railway links and underground access to a new central station
- new airport railway station
- new downtown metro station
- re-configuration of holding sidings
- land-use planning for free area of the abolished terminal station at-grade.

The complexity of the whole planning design is underlined by the following two figures exhibiting the planned railway lines for accessing the new underground station and the redundant area of the existing terminal station.
The components of the rail network construction work are:

- 57 km of new tracks
- 20 km of new tracks for HSR (red lines in Figure C5-4)
- 33 km of tunnels (altogether 16; dotted lines in Figure C5-4))
- number of new passenger railway stations: 3
- number of new sidings: 1

The new railway stations are:

- underground central station
- underground station Stuttgart Airport (Filderstation)
- underground S-Bahn station Mittnachtstrasse.

The Central Station will be linked through a ring system to all interregional and regional rail networks. HSR will be aligned from Wendlingen (the point of connection with the Wendlingen-Ulm HSR link) to Stuttgart Airport with the possibility of connecting the airport through access links, and followed by a 7 km tunnel to the Central Station location. The HSR and intercity connection to the north is planned through a tunnel from the station to Stuttgart-Feuerbach where it connects with the HSR link to Mannheim.

Figure C5-5 illustrates the planned change of land-use in the area around the new underground station. The reclaimed land is encircled by a yellow line.
Figure C5-5: Area gained after reclaiming the Stuttgart terminal station

The terminal station covers an area of 106 ha which, once it becomes redundant, can be used for city development. According to the original plans about one half of this area was planned for residential and business purposes while the other half was to be used to extend the park area. These plans could already partly be realised after removing the freight station (area north-west to the passenger station in Figure C5-5, “Europaviertel”). According to the city planning office this area could provide residences for 11,000 inhabitants and new business offering workplaces for 24,000 employees. These would be close to the centre of the city with perfect access to all urban, regional and interregional public transport services.

The project promoters regard the design of the Central Station, developed by architect Christoph Ingenhoven, as very innovative and a symbol of the power of the region, its industry and its inhabitants. The upper picture of Figure C5-6 shows the location of the station which would be perpendicular to the present track direction. The rail tracks are planned 11 m under the surface and the roof at the surface is interspersed with bull’s-eye panes such that daylight can illuminate the underground building. The middle picture of Figure C5-6 illustrates how the station roof will be integrated into the park area. It is predicted that people will be able to walk on the roof and paths will cross the building. The main station hall designed by architect Bonatz in the 1920s will be preserved and serve as an entry hall, while two side buildings (northern and southern wings) will be removed. The lower picture depicts the interior space of the station with the railway platforms and installations. It underlines the architect’s aim to create a lucid, transparent and attractive atmosphere for the users, in harmony with the high tech train technology which will be operating in the station.
Figure C5-6: Design of the planned underground Central Station in Stuttgart

Source:
https://www.google.de/search?q=Stuttgart+21&tbm=isch&tbo=u&source=univ&sa=X&ei=SmKAU4rIOtP64QSxjYHAAg&ved=0CHUQ7Ak&biw=2560&bih=1270
A3.2 Wendlingen-Ulm HSR

The HSR Wendlingen–Ulm negotiates the steep gradient of the Swabian Alb hills through tunnels and follows the path of the A8 motorway in the sections at grade, see Figure C5-7.

Figure C5-7: HSR Wendlingen-Ulm

Some parameters of the link:
- length: 60 km
- length of tunnel links: 30 km (length of pipes 60 km)
- railway crossings: 17
- road crossings: 20.

The design speed for the HSR is 250 km/h. The maximum gradient is 25 \(^\circ\)/00 such that only passenger and light freight trains can use the link (gradient of the access ramp to the Central Station is 35 \(^\circ\)/00).

A4. Expected impacts on the railway transportation system

A4.1 Time gains of users

In the context of the macro-economic evaluation of the Stuttgart-Ulm railway project IWW et al. (2009) have modelled the change of transportation times for the users for Baden-Württemberg, Germany and the neighbouring European regions. Naturally the main time savings are calculated alongside the Stuttgart-Ulm-Augsburg corridor. The Stuttgart-Singen and Ulm-Friedrichshafen/Lake Constance corridors also show substantial time savings. This is because it has been assumed that there are synergy effects of upgrading these railway corridors. All in all, about 75% of the inhabitants of Baden-Württemberg, as railway users, can enjoy direct benefits of the main and supplementary projects. Other regions of Germany, such as the Bavarian corridor between Neu-Ulm and Munich or the Rhine corridor, also benefit (see Figure C5-8).
The Communication Bureau for the project published statistics of time savings for all regions of Baden-Württemberg in 2011 from which some examples are extracted (Table C5-3). This demonstrates that for many OD relationships the time savings are substantial enough for people to use the time saved for alternative activities. Thus the attractiveness of regions for commercial purposes increases.

Table C5-3: Travel time comparisons for selected OD relationships

<table>
<thead>
<tr>
<th>OD-Relationship</th>
<th>Travel time without project (min)</th>
<th>Travel time with project (min)</th>
<th>Travel time savings (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ulm-Stuttgart</td>
<td>56</td>
<td>28</td>
<td>28</td>
</tr>
<tr>
<td>Friedrichshafen-Stuttgart</td>
<td>135</td>
<td>99</td>
<td>36</td>
</tr>
<tr>
<td>Konstanz-Stuttgart Airport</td>
<td>194</td>
<td>119</td>
<td>75</td>
</tr>
<tr>
<td>Singen-Stuttgart Airport</td>
<td>162</td>
<td>93</td>
<td>69</td>
</tr>
<tr>
<td>Calw-Ulm</td>
<td>151</td>
<td>105</td>
<td>46</td>
</tr>
<tr>
<td>Donaueschingen-Stuttg. Airp.</td>
<td>162</td>
<td>101</td>
<td>61</td>
</tr>
<tr>
<td>Schwäbisch Hall-Freudenstadt</td>
<td>217</td>
<td>156</td>
<td>61</td>
</tr>
<tr>
<td>Mannheim Stuttgart</td>
<td>36</td>
<td>33</td>
<td>3</td>
</tr>
<tr>
<td>München-Paris Est</td>
<td>326</td>
<td>293</td>
<td>34</td>
</tr>
</tbody>
</table>

Source: Kommunikationsbüro Bahnprojekt Stuttgart-Ulm e.V.

Figure C5-8: Time Savings of the Stuttgart-Ulm rail project

Source: IWW et al. (2009).
A4.2 Improvement of service integration

The new through-bound station allows an improved network of rail services for regional and local public transport to be developed. The supply of train services can be increased by 30% in the new regional network and all major cities in the region ("Oberzentren") will be interconnected at least hourly. On the main axes between Stuttgart and Karlsruhe, Ulm, Tübingen, and Heilbronn Aalen the frequency of synchronised rail services will be even higher. The new links and stations will be used by 6 ICE lines and 4 IC lines. The time savings for ICE trains with a maximum speed of 250 km/h will be about 30 min., as a result of the higher speeds, reduced waiting times in the station and the more efficient deceleration on the access links. The increase in passenger-km in intercity transport is estimated to be about 30%.

The increase of capacity is also estimated to be 30% by Deutsche Bahn AG which highlights additional advantages in the form of the unbundling of operations for intercity, regional and local services, better use of rolling stock and improvement of crew scheduling. Furthermore, capacity is gained on the current track which might be exploited in the future by additional freight service.

A5. Financial arrangements

Both major components of the Stuttgart-Ulm railway project are associated with severe financial problems and prompted unusual financial arrangements. Different financial schemes had to be developed because of the different legal competences for the components. Figure C5-9 shows that the cost estimates for the most problematic component, Stuttgart 21, have increased rapidly from EUR 3 to 6.5 billion within 3 years. For the Stuttgart-Ulm HSR the cost estimate is still EUR 2.89 billion but it seems probable that this will be revised in the near future and that the total costs of both components will approach EUR 10 billion. The State of Baden-Württemberg (BW) has a high financial commitment in the financial schemes for both components. While BW is not competent or responsible for the HSR component, it is very interested in an accelerated implementation such that it has decided to pre-finance the construction works for the first years until the federal funds are available.

Figure C5-9: Development of the cost estimates for Stuttgart 21

![Investment Costs Stuttgart 21 (mill. €)](source)

Source: Own representation of data from Kommunikationsbüro Bahnprojekt Stuttgart-Ulm e.V.
Table C5-4: Investment cost allocation for the Stuttgart-Ulm rail project (without cost escalation for HSR, ca. EUR 300 million)

<table>
<thead>
<tr>
<th>Major project components</th>
<th>Partner</th>
<th>Status 12/2009 in EUR million incl. risk</th>
<th>Status 12/2012 in EUR million incl. risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>HSR</td>
<td>Federal State and EU</td>
<td>1 790</td>
<td>1 790</td>
</tr>
<tr>
<td>Wendlingen-Ulm</td>
<td>State of BW</td>
<td>950</td>
<td>950</td>
</tr>
<tr>
<td></td>
<td>DB AG</td>
<td>150</td>
<td>150</td>
</tr>
<tr>
<td>SUM HSR</td>
<td></td>
<td>2 890</td>
<td>2 890</td>
</tr>
<tr>
<td>Stuttgart 21</td>
<td>Federal State</td>
<td>1 230</td>
<td>1 450</td>
</tr>
<tr>
<td></td>
<td>State BW</td>
<td>930</td>
<td>1 160</td>
</tr>
<tr>
<td></td>
<td>DB AG</td>
<td>1 750</td>
<td>3 300</td>
</tr>
<tr>
<td></td>
<td>Stuttgart Airport</td>
<td>230</td>
<td>230</td>
</tr>
<tr>
<td></td>
<td>City and Region</td>
<td>390</td>
<td>390</td>
</tr>
<tr>
<td>SUM S12</td>
<td></td>
<td>4 530</td>
<td>6 530</td>
</tr>
<tr>
<td>Sum total</td>
<td></td>
<td>7 420</td>
<td>9 420</td>
</tr>
<tr>
<td>Sum « private »</td>
<td></td>
<td>2 130</td>
<td>3 680</td>
</tr>
<tr>
<td>Sum public</td>
<td></td>
<td>5 200</td>
<td>5 740</td>
</tr>
</tbody>
</table>

Source: Own compilation of data from Kommunikationsbüro Bahnprojekt Stuttgart-Ulm e.V. and State Ministry of Interior Affairs.

Table C5-4 indicates that the overall costs of the project are currently estimated as being between EUR 9.4 and 9.7 billion. While the cost allocation of 2009 is covered by the financial agreement, the recovery of additional costs of EUR 2 billion is still being negotiated. The state of Baden-Württemberg and the city of Stuttgart insist that their cost contributions are limited to the figures of the financial arrangement of 2009, while the Deutsche Bahn AG argues that a clause in the financial arrangement provides legal grounds for further public co-financing, in particular for the costs of plan changes and of construction stops, for which Deutsche Bahn AG does not feel responsible. The last meeting of the Project Steering Group in November 2013 did not reconcile the conflict.

The tremendously high costs of the project and the lack of transparency of the cost calculations were among the main reasons for protest movements against Stuttgart 21 and the HSR project (see section A7).

24 The co-financing of the EU for the budget 2007-2015 is EUR 101.5 million for the HSR and EUR 114.5 million for Stuttgart 21.
A6. Cost-benefit analyses and estimates of wider economic impacts

Due to the different legal competences for the main components of the projects, different assessment studies have been performed:

- a CBA by the Federal MoT for the HSR project Stuttgart-Ulm-Augsburg
- an MCA for components of Stuttgart 21
- a study for the BW State Ministry of Interior Affairs for the macro-economic impacts of the comprehensive project
- a study for the city partnership “European Mainline” on European scale impacts.

Deutsche Bahn AG has developed internal business assessment calculations for the comprehensive Stuttgart-Ulm project which are not available. On the basis of the investment cost figures of 2009 the net rate of return was reported positive. The 2013 figures indicate that the net earnings will not be satisfactory but will still outweigh the losses from stopping the project. This heterogeneous information base indicates that a consolidated assessment has only been prepared for the macro-economic impacts while there is no consolidated CBA for the comprehensive Stuttgart-Ulm project.

A6.1 CBA and MCA assessment studies

A6.1.1 CBA for the Stuttgart-Ulm-Augsburg HSR

As the Federal Government is responsible for the intercity rail links the Stuttgart-Ulm HSR link has been analysed in the context of the Federal Transport Investment Plan (BVWP). The project is defined as the HSR link between Stuttgart and Ulm (without all regional components and stations of Stuttgart 21) plus the upgrade of the link between Ulm and Augsburg. This project has been re-assessed and is in the “Investment Needs Plan” which has been approved by the Parliament and is the legal basis for public funding of federal transportation projects.

In the last “Check of Investment Needs Planning” 2010 of the Federal MoT Stuttgart-Ulm intercity rail project the CBA result came out positive with a benefit-cost ratio of 1.5 (see Table C5-2). This reconfirmed that the Federal Government could stick to the agreement made and finance the major part of the project; the State of Baden-Württemberg would partly pre-finance the project while the EU would co-finance a small share. In the case of an alternative priority setting for projects in the HSR network (prioritising the so-called Eastern corridor from Munich via Nuremberg – Würzburg – Aschaffenburg to Frankfurt) the benefit cost ratio of the Stuttgart-Ulm project would drop to 1.2. A sensitivity analysis, which assumes a decrease of 15% of traffic compared to the forecasts made before the economic crisis, would result in a benefit-cost ratio of 1.0.

Some details from the traffic forecasts by Intraplan and BVU (2010):

- Diverted passengers km/a: 710 million
- Diverted ton km/a: 420 million

25 The federal Stuttgart-Ulm project comprises the link Augsburg-Ulm-Wendlingen (the second major component of the Stuttgart-Ulm rail project) plus the intercity link from Wendlingen through to Stuttgart Airport to the Central Station. The costs for the intercity tracks have been appropriately allocated.

26 This was the preferred strategy of Deutsche Bahn AG 1997-1999.

27 The sensitivity analysis reflects the adjustment to the reduced economic prospects after the economic crisis, see Rothengatter et al. (2010).
- Diverted air trips/a: 0.9 million
- Increase of passenger transport volume in the Stuttgart-Ulm corridor: from 10.6 million trips/a to 17.5 million trips/a, stemming from traffic diversion (car, air), induced traffic and changed routing of trips
- Additional freight trains: 16 on existing track, 16 on new track (by night, max. 1,050 tons)
- Time savings in passenger transport: 3.1 million hrs/a (business)
- Time savings in passenger transport: 6.3 million hrs/a (other purposes)
- Share of international passenger transport: 23%
- Share of international freight transport: 32%
- Share of passenger transport of total benefits: 76%
- Share of freight transport of total benefits: 24%
- Sum of discounted monetary benefits including external costs: EUR 3,670 million
- Sum of discounted costs: EUR 2,531 million
- Sum of net benefits: EUR 1,139 million; benefit/cost ratio: 1.5

A6.1.2 MCA for Stuttgart 21 components

The state of Baden-Württemberg, the region and the city of Stuttgart are responsible for the regional and urban components as well as the station buildings while the Federal Government can provide co-financing. Therefore this part of Stuttgart 21 has not been evaluated by the standardised CBA scheme of the Federal MoT. Instead the urban parts were analysed in 2006 using a multi-criteria scheme which is obligatory for local public transport investments. These investigations have been undertaken on behalf of the Federal Agency for the Railways (Eisenbahnbundesamt), the responsible regulator for railway investments, and the former Ministry of Interior Affairs of Baden-Württemberg. The results have not been made public. In the meantime, the Federal MoT has requested the adjustment of calculations for the development of economic trends after the crisis.

A6.2 Impact study for the European Mainline Paris-Budapest/Bratislava

When the Federal MoT and Deutsche Bahn AG started to rethink the Stuttgart-Ulm project in 1997 and to favour an alternative Eastern corridor from Munich to Frankfurt, the “Magistrale für Europa“ (European Mainline) partnership of cities, took the initiative of stressing the priority of the Western corridor through Ulm and Stuttgart. The Magistrale partnership was established in 1990 and included the major cities on the Paris-Strasbourg-Karlsruhe-Stuttgart-Ulm-Augsburg-Munich-Salzburg-Vienna-Bratislava/Budapest corridor. In 1999 it launched an international study into the spatial integration of the economies of the project as the corridor included five EU countries: France, Germany, Austria, Slovakia and Hungary. This study was the basis for promoting the corridor for European and national support and the corridor was integrated into the TEN-T in 2004 as project P17 (EU Commission, 2005). In 2011/2013 after the re-definition of TEN-T and the introduction of the core network concept, this corridor (now starting at Strasbourg) became part of the Rhine-Danube corridor (core network corridor 9, see EU Commission, 2013).

26 Including some chambers of commerce and associations of regional communities.
Figure C5-10 illustrates the challenges of raising the corridor to a high standard railway level. The main construction components are:

- Beaudrecourt-Strasbourg (meanwhile under construction)
- Appenweier-Karlsruhe (partly under construction)
- Stuttgart-Ulm-Augsburg (construction started)
- Munich-Salzburg
- Salzburg-Vienna (construction started)
- Vienna-Bratislava

With these measures, the average speed on the 1,400 km rail corridor increases from 90 to 130 km/h (including stops). For some city connections the speeds increases are much higher, e.g. 240 km/h for Paris-Strasbourg. Other sections (e.g. Munich-Salzburg) provide much lower speeds; traffic volumes in the border area between Germany and Austria are comparatively low. Some results of multi-modal transport modelling are:

- The total number of rail trips increases from 47 to 61 million trips per year.
- 8.9 million trips are diverted from road and air.
- 3.7 million trips are induced by choices of destination (1st order induced traffic).
- 1.9 million trips are induced by increased economic activities in the corridor regions (2nd order induced traffic).

The last bullet point indicates that a model of wider economic impacts (in the terminology of the SACTRA Committee, 2000) has been applied. The model of the Institute of City and Regional Planning of the Vienna TU (Srf) is based on a cross section analysis for NUTS 3 regions of Europe and estimates the influence of transport improvements on the economic activities by introducing an accessibility indicator into the regional production functions, differentiated by economic sectors. Accessibility, in this way, is treated as a production factor on a par with labour and capital. The model generated the result that an additional gross added value of about EUR 1 billion can be expected on the corridor which links 34 million inhabitants and that high-tech sectors are strengthened for the benefit of greater competitiveness of the regions.
In this context it is important that the focus is not only on the provision of high speed rail links but also on a good interconnection between intercity, regional and urban rail networks.

The study reveals that the problem of providing seamless changes between intercity and urban public transport has been successfully tackled by some cities, for example in Karlsruhe, by providing an integrated regional and urban service with hybrid train technology.

Figure C5-11 shows the way in which the benefits of high speed can spread to the regions by efficient transit networks.

This type of approach shows how transport investments can stimulate economic growth and employment. All indicators generated are compatible with the national accounts and can be drilled down to the lower regional level of NUTS 3. There is certainly some risk of over-interpreting the results, however; because “accessibility” is the only production factor, besides labour and capital, the variable might also measure other effects implicitly.
A6.3 Macroeconomic impact study for the Stuttgart Ulm railway project

In 2009 IWW, Srf and VWI presented a study on the macro-economic impacts of the Stuttgart-Ulm rail investment, integrating the two components of the project. This study followed the approach applied in the “Magistrale” report of 2001. Basic methodology was a cross section analysis of NUTS 3 regions in the EU plus Norway and Switzerland. Two alternative models were tested: (i) the Srf model which had been applied in the “Magistrale” study and introduced “accessibility” as a production factor of regional production functions along with sector-based differentiation and (ii) the IWW model which followed Biehl's theory (1991). According to this theory, the regional economic development is dependent on “potential factors” which are immobile, non-substitutable, indivisible and polyvalent. Transport infrastructure is one of these potential factors, while others can be geographical features (which can be relevant for tourism), education level or soft factors like cultural attractiveness. Furthermore, Biehl suggests testing the regions for bottlenecks before deciding upon investment in transport infrastructure, because such an investment would be useless or even negative (generating regional backwash effects) if there were no bottlenecks in the transport system. This means, in brief, that transport infrastructure cannot generate economic growth alone; it has to interact with other potential factors and the production factors labour and capital to induce new economic structures which contribute to growth.

The results of the study are:

- Srf approach: additional value added for Baden-Württemberg of EUR 530 million/a.
- Srf approach: additional employment for Baden-Württemberg of 9,500 workplaces
- IWW approach: additional value added for Baden-Württemberg of EUR 440 million/a
• IWW approach: additional employment for Baden-Württemberg of 8,000 workplaces.29

• The induced urban development leads to an estimated employment effect of 2,600 jobs. This has not been added to the job balance because IWW argued that the urban effects are included in the overall statistical macroeconomic impact measurement.

• All environmental indicators are positive, particularly noise, air pollution and CO\textsubscript{2} emissions (reduction of 177,000 tons/a).

• Development of high quality work places is fostered by both studies.

• Fostering the relative strength of the production sector for Baden-Württemberg including production related services.

Figure C5-12 presents the regional results of the analysis. Although the Stuttgart region will receive the highest absolute benefits there are high growth effects to be expected along the corridors from Stuttgart to Ulm/Augsburg, to Singen/Lake Constance and to Friedrichshafen/Lake Constance.

Figure C5-12: Impacts of the rail investment Stuttgart-Ulm on regional GVA

The above calculations have been performed assuming that the overall investment cost of the comprehensive project is EUR 5.1 billion which leads to a positive result with an acceptable rate of return and pay-back period (around 20 years) for the public capital. The question still arises whether this result is valid under the existing condition of an almost doubled investment cost budget. A sensitivity analysis with the recent budget figures shows that the project is only viable at very low interest rates (2.5% and lower) and very high pay-back periods (55 years and more). As can be gleaned from statements of the board of the Deutsche Bahn AG, the commercial profit rate of the project is approaching zero.

29 For comparison, the Seine-Nord Europe canal project SETEC (2013) has estimated an employment effect of 10,000 jobs in the construction phase (double the value of the Stuttgart estimate) and 50,000 jobs in 2050 (more than five times the Stuttgart estimate for about half of the total invested sum).
Combining this information results in the conclusion that every increase in cost will result in an increased risk that the project will become unprofitable for the company and not beneficial for the public. The newly established management company for the Stuttgart-Ulm railway project has announced that strict cost discipline will be applied to keep the cost of the Stuttgart 21 element under EUR 6 billion. There is still no clear indication that this will be successful, however.

A6.4 Impact of the project on rail freight transport

The opponent stakeholders of the project have argued that the project will not provide any benefit for rail freight transport. The steep gradient of the new Wendlingen-Ulm link (24.5 o/oo on average) would make it impossible to operate the full range of freight trains (see an article in VerkehrsRundschau from March 8, 2013, which refers to arguments of Michael Cramer, Spokesman for Transport of the Green Party in the EP). Nevertheless, the benefit calculations for the HSR link include the positive impacts of an increased capacity of 32 freight trains per day, of which 16 would use the existing track and 16 the new link (see section 6.1.1 of this Appendix). According to Cramer’s arguments the current small benefit surplus would vanish if the unrealistic benefits for rail freight transport were cancelled.

Deutsche Bahn AG and the Federal Ministry of Transport have responded to this argument as follows:

- The new track can be used by freight trains with a gross weight of less than 1,050 tons. Currently about 40% of freight trains in Germany are lighter than 1,050 tons and in the future this proportion will increase as a result of structural changes in consignments. These are developing towards increasingly lighter unitised and container cargo.
- The shift of passenger transport from the existing to the new track will increase the capacity on the existing track to accommodate more freight trains.

The question of whether the use of the new HSR track for freight trains by night will be an economically attractive option is still unanswered. As long as freight trains have to pay the high track charges for using HSR tracks (comparable to passenger trains), there will be limited interest of the commercial rail freight companies in the new track. This assumption is underlined by the experience of the HSR-link between Ingolstadt and Munich. Benefits stemming from rail freight transport had also been calculated for this link. Since opening in 2006 the HSR-link has not been used for freight transport. From this example one can conclude that changes in the present track pricing system will be necessary to divert freight trains to the new track.

In the context of the controversial discussion the opponent stakeholders have also proposed the argument that a new railway link between Stuttgart and Ulm would only make sense if it could accommodate all categories of freight trains. Section A2.2 noted that such an alternative (“K-variant”) had been preferred by Deutsche Bahn AG at the beginning of the planning process. The decision to reject this alternative was motivated by:

- the limited importance of the Stuttgart-Ulm-Munich corridor for rail freight transport,
- the very high additional costs for keeping the gradient below 13 o/oo compared with a passenger/low-weight freight alternative with a gradient of 24.5 o/oo, and
- the higher construction risks in the very difficult geological area of the Swabian Alb.
A7. Protest movements against Stuttgart 21 (S 21)

A7.1 History of protest

While the parliamentary decisions in favour of S 21 had been passed with a large majority (in 1995, 41 : 16 votes pro S 21) there was a strong opposition from the beginning. The project was a central topic of the Stuttgart Lord Mayor elections in 1996 when the Christian Democratic candidate beat the Green candidate with 43% of votes compared with just 39% of votes. The Green candidate was against the project and had suggested that a referendum should be held. The main arguments against the project were: (i) the huge investment costs which could be better used for other public projects, (ii) the high construction risks because of the difficult topography and geological conditions, (iii) the illusion of financing a major part by land sales, (iv) the plans for developing the reclaimed area and (v) doubts surrounding the capacity calculations and operational programmes of Deutsche Bahn AG. In a later phase a number of further weaknesses were added, beginning with the sacrifice of old trees in the castle garden and including insufficient security measures and emergency facilities. After his re-election in 2004 the Lord Mayor refused to follow a petition for a referendum in 2006 which had been signed by 67,000 citizens. Instead, a voting of the State Parliament of Baden-Württemberg was organised which resulted in a large majority in favour of the project (115 : 15 pro).

The years up to 2009 were characterised by the changed position of Deutsche Bahn AG such that the opponents were convinced that the project plans were buried. When Deutsche Bahn AG again showed interest, a binding financial agreement was signed between the State BW, the Federal Government, city and region of Stuttgart, Stuttgart Airport Company and Deutsche Bahn AG in 2009. As most sections of the project had been legally approved, Deutsche Bahn started construction works in February 2010.

In the meantime several private organisations had formed an alliance against the project known as “Action Alliance against S21” and were supported by the Green Party, NGOs and parts of trade unions. Protest gatherings were organised, following the example of citizen protests against the socialist regime in Leipzig 1989 which were called “Monday demonstrations”. When the construction work started, by pulling down the north wing of the station and cutting trees in the castle park area, protest movements of up to 50,000 people came together, culminating on 30th September, “Black Thursday”, when the police intervened and a number of people were injured.

A7.2 Mediation process, state elections and referendum

After “Black Thursday” the state and city governments agreed to start a mediation process to bring all arguments together in a transparent way and to reconcile the situation. All parties agreed to appoint elder statesman Heiner Geissler, a former Christian Democratic minister and secretary general, as a mediator. The mediation process (in the legal sense: arbitration) started on October 6 and ended on November 30 after 9 rounds of an open exchange of arguments. The opposing parties were given the opportunity to support their arguments with expert studies which were paid for by the BW State. In this way the opponent parties were able to put forward a number of arguments revealing weak points of the project and propose alternatives. The main points were:
The capacity of the station was insufficient and lower than the existing terminus.

Severe bottlenecks would be generated on underground access links.

The facilities for handicapped people were insufficient.

The facilities for emergency management and fire protection were insufficient.

Serious environmental deficiencies were revealed, for example the neglect of air interchange in the sensitive Stuttgart valley, and felling of trees on which rare species live.

Inadequate estimates of investment costs.

An upgrade of the present terminal station would be a cheaper and more efficient solution (K 21 instead of S 21).

Better opportunities to spend the money, e.g. on the freight transport link alongside the Rhine valley between Karlsruhe and Basel.

The final statement of the mediator (arbiter) H. Geissler included the following elements:

- Continuation of S 21: The alternative concept K 21 includes good arguments but does not have a legal planning base. A compromise solution K 21 /S 21 is not feasible. Discontinuance of S 21 would be very costly without bringing any benefits.

- A number of improvements of S21, for instance:
 - land use plans to be changed
 - relocation, rather than felling, of trees from the castle gardens to other places security for users, including handicapped people
 - capacity and operation problems to be subject to a “stress test” with the involvement of neutral experts.

The statement also includes recommendations for carrying out mediation processes and referendums early enough for alternatives to be discussed at a time when there is a realistic chance for implementation. It refers to the Swiss process of decision making for public investments which guarantees transparency and participation of citizens.

The “stress test” was carried out in spring and early summer 2011 and audited by the Swiss consultancy SMA. The aim was to prove that the new underground station with 8 tracks offers a 30% bigger capacity compared with the present terminus with 16 tracks. It needs a capacity for operating 49 trains in peak hours. The Deutsche Bahn AG demonstrated that this is realistic with the preservation of a sufficient quality of service, and this was testified by the auditor SMA and presented to the public on July 29, 2011. However, this result is still not accepted by the project opponents.

Despite the success of the stress test, the auditor SMA found that the capacity of the new station was limited against the background of future demand development and that a combined solution of a terminal and an underground station might be preferable for smooth railway operations with synchronised time tables. The mediator H. Geissler finally supported this “Zürich”-solution. However, to avoid restarting the complex legal approval processes these suggestions were not implemented by Deutsche Bahn AG.

In March 2011, state elections were held in BW. They resulted in a majority for a green/social democratic government in which the Green Party had the majority of votes.
With this majority they could fill the position of Prime Minister. The ruling parties agreed on a public voting on S 21 (often called a “referendum”, although the outcome was not legally binding). This “referendum” was held in November 2011 and resulted in 58.9% in favour and 41.1% against the project.

A7.3 Political situation at the beginning of 2014

The Green Party won the state elections, announcing that they were clearly against the Stuttgart projects, which attracted votes from the project opponents. This may explain why Deutsche Bahn AG is complaining about a lack of political support and unnecessary delays while the State MoT is arguing that they are taking their supervisory task seriously. The opponents lost the “referendum”, however, which provided a clear directive to continue with the project. This has caused a dilemma because the new Green Minister of Transport has been one of the most prominent opponents of an underground station (also of a combined underground station) in Stuttgart since the nineties and is now responsible for implementing the decision to go ahead with the project. They must do their job of strictly supervising the project and protecting the citizens from further failures (e.g. increases of government funding requirements). Since October 7, 2012, Stuttgart has had a Green Lord Mayor. Under this political configuration the State BW and the city of Stuttgart strictly refuse any increase of financial contributions to the project as claimed by Deutsche Bahn AG after their drastic revisions of cost estimates. Therefore, while construction work is going on, the final allocation of costs is still open.
Appendix 2: References

- Biehl, D., 1991
ANNEX 6. FEHMARN BELT FIXED LINK

Table C6-1: Project summary Fehmarn Belt Fixed Link

<table>
<thead>
<tr>
<th>Aspect</th>
<th>Description</th>
<th>Aspect</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Title</td>
<td>Fehmarn Belt Fixed Link (planning and preparatory works)</td>
<td>TEN-T code</td>
<td>2007-EU-20050-P</td>
</tr>
<tr>
<td>Countries / area</td>
<td>Denmark, Germany</td>
<td>Start date</td>
<td>June 2008</td>
</tr>
<tr>
<td>Mode(s)</td>
<td>Rail, road</td>
<td>End date</td>
<td>December 2015</td>
</tr>
<tr>
<td>Managing authority</td>
<td>Femern A/S</td>
<td>Duration</td>
<td>90 months</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Delay (months)</td>
<td>-</td>
</tr>
<tr>
<td>Included in TEN-T</td>
<td>Since 2004; priority project № 20 since 2007. In March 2009 the Danish Parliament passed a legal act adopting the treaty between Denmark and Germany and committing Denmark to the implementation of the coast-to-coast fixed link.</td>
<td>TEN-T element</td>
<td>Core network (Scandinavian-Mediterranean corridor Helsinki-Valetta)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Investment cost (m€)</td>
<td>Coast-to-coast fixed link: 1999 estimate (1996 prices)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cable-stayed bridge: 3,040</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Immersed tunnel (4+2 solution): 3,780</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2011 estimate (2008 prices):</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Immersed tunnel (4+2 solution): 5,500</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Construction costs: 3,800</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Other works: 300</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Project management, operational preparations: 700</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reserves: 700</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Same estimate (in current prices, inflated to future years): 7,228</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Present (preparatory) phase: 486</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EC funding TEN-T (m€)</td>
<td>Present (preparatory) phase: 339 reduced to 193, now increased to 204.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2008: 19.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2009: 10.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2010: 50.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2011: 22.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2012: 30.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2013: 71.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2014-2020: 1,954</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Source: EC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EC funding Cohes. (m€)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>d.n.a.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Funding agent 1</td>
<td>Femern A/S (state owned), from private market and Danish National Bank</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EC share</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>d.n.a.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Value (m€)</td>
<td></td>
<td></td>
<td>to be determined</td>
</tr>
</tbody>
</table>
Funding agent 2

Cost-benefit-analysis

<table>
<thead>
<tr>
<th>Source</th>
<th>Value (m€)</th>
<th>CBA ratio</th>
<th>Public y/n</th>
<th>Ex-post evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) PLANCO/COWI (1999): Economic and financial evaluation of a fixed link across the Fehmarn Belt, Final Report, June 1999: Value of time: ECU 9.0/36.5 per hour of leisure/business trip (year not specified) CO2 value: DEM 180 per tonne (year not specified) Social Discount Rate: 3%</td>
<td>-</td>
<td>Economic benefit-cost ratio (BCR) between 0.84 (bored railway tunnel) and 2.6 (immersed tunnel); EIRR : between 2.2 and 7.8% respectively (immersed tunnel)</td>
<td>Y</td>
<td>d.n.a.</td>
</tr>
</tbody>
</table>

Transport scenario

<table>
<thead>
<tr>
<th>Source</th>
<th>Dated from</th>
<th>Ext. cost (m€)</th>
<th>Public y/n</th>
<th>EIA</th>
<th>CIA</th>
<th>Financial analysis</th>
<th>Expected RoI</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) FTC (Fehmarn Belt Traffic Consortium) (1999): Fehmarn Belt Traffic Demand Study, Final Report</td>
<td>(1) June 1999</td>
<td>Solution Model 1 (Scenario 0+2): 21.4 m€ (2010)</td>
<td></td>
<td>In progress see Scoping Report: Proposal for environmental investigation programme for the fixed link across Fehmarn Belt) Femern A/S: Transboundary Environmental Impact Assessment; Documentation for the Danish Espoo Procedure (Espoo-report), June 2013</td>
<td></td>
<td>No separate CIA: Climate change avoidance costs integrated in CBA</td>
<td>(1) FIRR between 1.7% (2-track immersed rail tunnel) and 9.1% (immersed 2-lane road and 1-track rail tunnel) (2) Payback time for the emerged tunnel is about 33 years. (3) Payback time: 39 years</td>
</tr>
</tbody>
</table>

Externalities covered

- Emissions of poisonous exhaust gases
- Climate relevant emissions of CO2
- Traffic noise
- Separation effects of road traffic in build-up areas
- Other impairments from road traffic in build-up areas

Public y/n

- Y

Financial analysis

<table>
<thead>
<tr>
<th>Source</th>
<th>Expected RoI</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) PLANCO/COWI (1999): Economic and financial evaluation of a fixed link across the Fehmarn Belt, Final Report, June 1999:</td>
<td>(1) FIRR between 1.7% (2-track immersed rail tunnel) and 9.1% (immersed 2-lane road and 1-track rail tunnel) (2) Payback time for the emerged tunnel is about 33 years. (3) Payback time: 39 years</td>
</tr>
</tbody>
</table>

Ex-post evaluation

- d.n.a.

Source: own analysis.
The Fehmarn Belt Fixed Link project is part of the global project Fehmarn Belt railway axis (Priority Project 20). As an extension of the Öresund crossing (Priority Project 11) and the Nordic triangle road and rail links (Priority Project 12), it is a key component of the main north-south route connecting the Nordic countries to the rest of Europe. The decision whether to build an immersed tunnel or a cable-stayed bridge is still pending, though the tunnel is the most probable solution.

The studies cover environmental, geotechnical and navigational investigations, safety assessments as well as design activities and adaptations for use in the plan approval process of the authorities. The geotechnical investigations are confined to the planned link corridor, whereas the environmental investigation will cover wider areas of the entire Fehmarn Belt and most of Kieler Bucht and Mecklenburger Bucht. The studies also constitute the basis for identifying the best technical solution (bridge or tunnel).

During the TEN-T programme period 2007-2013, extended to 2015, the construction activities will primarily implement the prefabrication areas for the production of elements of the tunnels or bridge caissons, piers and girders.

Activities in the current TEN-T budget cycle are preparatory studies and works for the construction of the coast-to-cost fixed link scheduled for 2015 to 2021. Besides this, the planning processes are underway for rail access in Germany (2007-DE-20010-S: Studies for connecting the German hinterland to the future Fehmarn Belt fixed link, rail section Lübeck-Puttgarden; EUR 25.4 million - EU contribution: 50%) and in Denmark (2007-DK-20060-S: Studies for the capacity improvements of the section between Copenhagen and Ringsted; as well as 2007-DK-20070-S: Studies for upgrading the railway access lines to the future Fehmarn Belt fixed link - from Ringsted to Rødby and the intersection in Kastrup; both together EUR 45.4 million - EU contribution:50%).

The Fehmarn Belt fixed link with rail and road access routes has been retained as part of the TEN-T core network for financing during the 2014 to 2020 cycle.

The most recent schedule of the preconstruction preparatory activities (April 2012) is shown in Figure C6-2 below.
6.1. Methodology and comments on the CBA and project selection

In 1999, an economic analysis was carried out into the feasibility studies concerning the fixed link across the Fehmarn Belt. The analysis was done by consultants of the German and Danish Ministries of Transport, based on the methodology of the German BVWP adapted for Danish methodological recommendations. At the time, no officially recommended methodology for the evaluation of EU supported projects existed and the CBA could be considered as "state-of-the-art".

In 2003, a new CBA was requested by the Danish Ministry of Transport in accordance with Danish requirements.

The following elements were considered in the economic analysis carried out for the Fehmarn Belt Fixed Link in 2004:

- Investment costs: for the fixed link and for the necessary railway investments on land.
- Operating costs of the fixed link
- User benefits: time savings and changes in vehicle operating costs arising from benefits for existing users as well as from new and transferred users.
- Environmental costs: including air pollution, noise and accidents, and CO2-Emissions.
- Revenue from the fixed link.
- Consequences for other operators: including railway track managers, railway operators, the Great Belt and the Öresund fixed links.

The above elements are traditionally the key elements in analyses of transport investments, and they are considered decisive in determining whether a fixed link is economically profitable. Besides the above elements, a fixed link may also have reduced barrier effects, cause loss of undisturbed nature, and create inconvenience during construction etc. These effects are not included in the analysis as it has not been possible to quantify them. No further CBA has been ordered by the Danish government.

Throughout the complex process of planning, the Fehmarn Belt project always had the political endorsement by the Danish government and the Danish parliament.

As far as we could establish, no specific selection procedure took place at national level. The project was proposed by the Danish government who negotiated with the German government. As Germany was reluctant to invest in the fixed link, Denmark decided to implement the coast-to-coast infrastructure alone while Germany agreed to upgrade and electrify the Lübeck-Puttgarden railway line.

When the TEN-T programme for 2007-2013 was negotiated, the Danish and German governments asked for the Fehmarn Belt project to be added to the list of priority TEN-T projects. Both the German and the Danish government considered the project to have a common interest goal. The project was retained on the basis of the different studies and assessments which had been carried out. The Danish government always had the Fehmarn Belt Fixed Link project on its priority list.

This choice can be supported by four arguments which represent the common interests of the EU.

EU Transport Policy

One reason for putting the Fehmarn Belt Fixed Link on the TEN-T Priority list has to do with the goals of the European Transport Policy. One of these goals is to transform the existing patchwork of European transport infrastructure into a unified, high-quality Trans-European Transport Network (TEN-T) that can handle the expected continuous increase in long distance traffic volumes It will connect the peripheral regions to the central areas, remove bottlenecks, upgrade infrastructure and improve cross-border transportation for passengers as well as for goods.32

Integrating the European Regions is the second reason for prioritising the Fehmarn Belt Fixed Link for EU funding. The Fehmarn Belt Fixed Link is an integral part of the EU’s priority transport project no. 20 “Fehmarn Belt Railway Axis” and also of the EU’s priority core network corridor 5 - a North-South corridor that runs all the way from Helsinki in Finland to Valletta in Malta. Once completed, the corridor will contribute to the political goal of further integrating Europe’s regions: as travel and transport times diminish and transnational interaction increases, disparities between regions are expected to decrease.33

EU Internal Market

The project contributes to the European objectives of strengthening the competitiveness of the Internal Market and of increasing integration of Member States and regions. By reducing the travelling time in the Danish-German cross-border region, the fixed link also enables new mobility and logistics patterns. Passengers travelling between Copenhagen and Hamburg will save at least one hour, and freight trains about two hours and 160 km,
compared to the current route via Jutland/Great Belt. This facilitates an increased exchange across the belt between continental Europe and Scandinavia, thus strengthening the competitiveness of the Internal Market.34

EU Climate Change objective

The positive impact on climate change is also an important factor in the selection of the Fixed Link as a priority project. This link is, first and foremost, part of a trans-European goods train corridor and will strengthen the relative competitiveness of CO\textsubscript{2}-efficient freight trains. Both the reduction of ferry emissions and the shortening of the route between Scandinavia and continental Europe by 160 km for freight trains will directly result in reduced energy consumption and thus in lower emissions of pollutants and GHG. The Fehmarn Belt fixed link thus directly contributes to the EU climate change objective of reducing transport-related greenhouse emissions by 60% by 2050.35

Total changes in GHG emissions for the immersed tunnel compared with the do-nothing alternative are estimated as follows36:

- Construction of the fixed link: 1,977,000 tonnes
- Operation of the fixed link: 5,900 tonnes per year
- Traffic 2025: -198,500 tonnes per year
- Traffic 2025: -50% Scenario: -43,000 tonnes per year

With a life-cycle of 120 years, savings in GHG emissions from modal shift of cargo from road and ferry to rail outweigh the GHG emissions from construction and operation of the tunnel. In the base traffic scenario, the balance turns positive after 10 years of operation, in the 50% scenario after 54 years.

6.2. Methodology and comments on the environmental analysis

There have been multiple activities concerning environmental conditions and impacts along the Fehmarn Belt route over the years. From 2009 to 2011 various field studies (in the whole region of the Fehmarn Belt Fixed Link) were carried out. An EIA study according to EU regulations is underway and close to finalisation and forms part of the application for approval of the project. The Danish Ministry of Transport issued the Environmental Impact Statement (EIS) for public hearing in July 2013 and a draft EIS for the attention of the German public was handed over to the competent authorities of Schleswig-Holstein in October 2013 for a plausibility and consistency check.

The EIA involves identification, description and assessment of the project's impact on human beings (including human health), fauna and flora (including biodiversity), soil, water, air, climate, landscape, cultural heritage and other material assets as well as the interaction between these environmental factors.

The project applicants must present information on the project's environmental impact, the "Environmental Impact Statement" (EIS), which is essential to the decision making regarding the tunnel to the competent authorities in Denmark and Germany. In the EIS all effects due to construction, presence of physical structures (use of land) and operation of

34 http://www.femern.com/home/region-3/the-european-dimension/eu-internal-market (14.11.2012).
36 COWI (2013), EIA Fehmarnbelt fixed link, Greenhouse Gas Emission Inventory, June 2013.
the fixed link on the above environmental factors will be identified, described and assessed. The Danish Minister of Transport has assigned the responsibility of conducting the EIA to Femern A/S and drawn up the EIS for the Fehmarn Belt Fixed Link.\(^{37}\)

The substance and extent of the proposed environmental investigations fulfil Danish and German legal requirements and standards. International norms and standards for environmental investigations such as HELCOM (Helsinki Commission)\(^ {38}\) recommendations are also taken into consideration. The following environmental factors are analysed in detail with respect to those potential environmental impacts which are relevant for the EIA of the Fehmarn Belt Fixed Link:

- Human beings, incl. human health, flora, fauna and biological diversity
- Soil, water, air, climate and landscape
- Cultural heritage and other material assets
- Pertinent interactions among the afore-mentioned environmental factors.\(^ {39}\)

The German EIA comprises two steps which are subdivided into different sub-categories. As a first step a spatial sensitivity analysis has been carried out to identify “relatively low impact corridors” for possible routes within a study area extending to the east and west of Puttgarden. The entire potential on- and offshore project area of the fixed link has been examined which, on land, extends both east and west of the ferry ports of Puttgarden and Rødbyhavn. The spatial sensitivity analysis (Raumempfindlichkeitsanalyse) will analyse the importance and sensitivity of the environmental factors in relation to the project largely based on information already available.

As a second step the technical planners developed the various alignment alternatives for the bridge and tunnel solutions. Alternatives include alignments with landing sites west of Puttgarden and Rødbyhavn (west-west), landing sites east of Puttgarden and Rødbyhavn (east-east) as well as east to west diagonal alignments etc. These alternative routes are then assessed and optimised with respect to environmental standards, but also with regard to aspects of traffic, navigational safety etc. A comparison of the alignment alternatives with respect to environmental impacts on the environmental factors and components will form the basis for a prioritisation of the alternatives, and lead to a selection of the alternative with the least environmental impact for both the tunnel and the bridge options.

All the relevant environmental investigations in line with European regulations are included in the Environmental Impact Assessment which were finalised in 2013 as part of the Danish VVM/German UVP procedures (Femern A/S: Transboundary Environmental Impact Assessment; Documentation for the Danish Espoo Procedure (Espoo report), June 2013; http://vvmdocumentation.femern.com/).

\(^{38}\) HELCOM: One of the most important duties of the Helsinki Commission is to make recommendations on measures to address certain pollution sources or areas of concern. These Recommendations are to be implemented by the Contracting Parties through their national legislation. Since the beginning of the 1980s HELCOM has adopted some 200 HELCOM Recommendations for the protection of the Baltic Sea. Online: http://www.helcom.fi/Recommendations/en_GB/front/ (19.11.2012).

\(^{39}\) Ibidem.
6.3. Characteristics of the transport demand scenario and its economic drivers

The traffic forecast studies were carried out by a mixed Danish and German consortium of transport consultants (selected by a public tender procedure) using state of the art traffic modelling methodologies.

The estimated revenue from the coast-to-coast link has been calculated on the basis of the traffic forecasts prepared by the FTC (Fehmarn Belt Traffic Consortium). The traffic forecast was prepared on the basis of an opening of the fixed link across the Fehmarn Belt in 2015. This was later updated to the opening year of 2021. During the first 25 years of operation the underlying assumptions result in an annual growth of 1.7% in road traffic. This analysis assumed a zero growth in traffic after 25 years of operation.\(^{40}\)

After 2001, there was a drastic growth in car traffic on the Rødby-Puttgarden ferry crossing. During the period from 2001 to 2007, the average traffic growth on the ferry crossing was 5.4% per year and the actual traffic in 2007 was almost 6,250 vehicles per day. This equals the forecasted traffic volume in 2013. In 2007, car traffic between Rødby and Puttgarden was thus approximately 6 years ahead of the traffic forecast.\(^{41}\) Subsequently traffic has declined. In the period from 2008 to 2012 the reduction was about 20%.\(^{42}\)

The ferry operator Scandlines argues that the traffic growth during the period 2001-2007 was solely due to their successful attractive discount ticketing in combination with a landside border shop concept.\(^{43}\)

In the following Table C6-2 the traffic forecast for the road traffic across the Fehmarn Belt Fixed Link in 2018 (with and without ramp-up) is shown.

\(^{41}\) ibidem, p. 12.

\(^{43}\) Ibidem.
Table C6-2: Traffic forecast for road traffic across the Fehmarn Belt Fixed Link in 2018

<table>
<thead>
<tr>
<th>Number of vehicles per day</th>
<th>Traffic forecast</th>
<th>Traffic forecast including ramp-up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Passenger cars</td>
<td>8 200</td>
<td>6 600</td>
</tr>
<tr>
<td>Lorries</td>
<td>1 300</td>
<td>1 000</td>
</tr>
<tr>
<td>Buses</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Total</td>
<td>9 600</td>
<td>7 700</td>
</tr>
</tbody>
</table>

The numbers are rounded off to nearest hundred.

The main governing assumptions are explained within the Financial Analysis report of 2008.

6.4. Investment cost and structure of financing

The Fehmarn Belt Fixed Link has been declared a priority project as part of the 2007-2013 planning of the expansion of the trans-European transport network of the European Union (TEN-T). It makes an important contribution to the trans-European transport network completing the central North-South axis between Scandinavia and central Europe along the shortest route. As a result, the project has received substantial funding from the European Commission.

The planning of the Fehmarn Belt Fixed Link project covers the following three stages:

Table C6-3: Planning stages of Fehmarn Belt Fixed Link

<table>
<thead>
<tr>
<th>Activity number</th>
<th>Activity name</th>
<th>Indicative start date</th>
<th>Indicative end date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Approval phase (Study)</td>
<td>01/06/2008</td>
<td>01/04/2015</td>
</tr>
<tr>
<td>2</td>
<td>Development phase (Study)</td>
<td>01/10/2008</td>
<td>31/05/2015</td>
</tr>
<tr>
<td>3</td>
<td>Construction phase (Works)</td>
<td>01/07/2011</td>
<td>31/12/2015</td>
</tr>
</tbody>
</table>

As part of the mid-term review in 2010, all of the projects with grants from the EU were evaluated by independent consultants to the Commission. Based on this review and given a slower planning phase, total eligible costs during the 2007-2013 programming cycle were estimated at EUR 756.4 million with the result that EU subsidies were reduced by around EUR 72 million from EUR 339 million to EUR 267 million. In a Second Amending Decision of 23 January 2012 the budget for 2007-2013 was further revised to EUR 193 million. In 2013, the Commission approved additional funding and total EU funding for preparatory works now amounts to EUR 204.1 million, to be disbursed by 2015.
Application for EU subsidies will again be made for the time period 2014–2020 during which most parts of the fixed link project will be built. According to Femern A/S, the present financial assessment of the project is based on a minimum TEN-T grant of 10% of the construction costs.

The final engineering of project funding has not yet been firmly decided by the Danish government. It is anticipated that subject to confirmation, Femern A/S will be the implementing agency of the fixed link project. In such a case Femern will also be in charge of project funding.

Construction funds will be raised in private capital markets. The Danish State will guarantee loans and bonds. The Danish National Bank will be on stand-by to complement private funding if insufficient.

In the longer term, revenues from the usage of the fixed link are expected to pay back all debts.

The project has not been analysed by the Danish government according to the return of investment (RoI), but rather to the total payback time which also takes account of the risks of the project. According to the latest financial assessment, the payback period is 33 years for the coast-to-coast fixed link.

6.5. Cost developments over the life-cycle of the project

Up to 2010 it was considered that a cable-stayed bridge would be the most suitable solution for a fixed link, based on the feasibility study of eight alternative cases (cable-stayed bridge, suspension bridge, bored tunnel, immersed tunnel, with different capacity level for road and rail traffic). New studies show that an immersed tunnel would be a better alternative. In 2011, an immersed tunnel with 4 road lanes and 2 rail tracks was recommended to the Danish parliament as the preferred solution, with a cable-stayed bridge as a second-best solution. A final decision has not yet been made.

Since the feasibility study in 1999, costs of selected solutions have been updated and over the course of time, the ranking has changed.

The cost estimate, which was a part of the 2011 recommendation of the preferred solution to the Danish Parliament, the immersed tunnel with four road lanes and double (electrified) rail tracks (4+2), is 5.5 EUR billion (in constant 2008 prices) which is equivalent to EUR 7.23 billion (in current prices – the price level of each individual year).

Based on the initial feasibility studies the cost estimate for the immersed 4+2 tunnel solution was estimated at EUR 3.8 billion (constant 1996 prices) in 1999, equivalent to EUR 5.1 billion (constant 2008 prices). The increase of EUR 400 million, according to Femern A/S, is due to the following reasons:

- A number of changes have been introduced in the conceptual design of the immersed tunnel solution (IMT), which forms the basis for the plan approval of the Danish and German authorities. The solution presented in the feasibility study has been developed and optimised on the basis of current legal requirements, including the tunnel safety directive, the TSI (Railway) and environmental legislation such as the EIA-directive, Natura-2000 directives. An example of change in the project is
that the motorway now has full emergency lanes in both directions. The net impact of these changes on the cost estimate is, however, minor.

- The major change in the cost estimate to the feasibility study is related to the planning phase, especially the project approval by the authorities in the two countries. In the feasibility study, 3 years were allowed for planning. Now it can be seen that the planning phase will take at least 6 years. The increase in time and cost is related to investigations into alternative solutions, where now instead of only for one solution in all 4 technical solutions conceptual designs have been developed, environmental impacts assessed etc. Cost relate to the legally binding plan approval procedures including requirements with respect to German Nature Protection law, environmental impact assessment laws and the way the Land Schleswig-Holstein has implemented German administrative and environmental laws.

- Annual operations and maintenance costs are estimated to be around EUR 73.7 million (2008 prices), compared to EUR 68.2 million in the original cost estimate (1996 prices).

As regards the assessment of revenues, the rather unstable economic situation in most of Europe certainly affects the reliability of revenue estimates. This risk is, however, borne by Denmark under the State guarantee model by which the State guarantees all equity and loans of the implementing body.

6.6. Development since the last study

When applying for additional funding, the Commission decided to increase the co-funding for works under the current decision to implement the project from 23.9% to the maximum of 30% (from EUR 193 to 205 million) for the years 2013-2015.

The (trans-border) environmental impact assessment was completed in 2013; the report is on the project website (Femern A/S: Transboundary Environmental Impact Assessment; Documentation for the Danish Espoo Procedure (Espoo-report), June 2013; http://vvmdocumentation.femern.com/). The German Espoo-consultation procedure will run parallel to the approval procedure conducted by LBV-Kiel, Schleswig-Holstein.

As regards our recommendation in the first study, a year ago, that an update of the traffic forecast and the CBA are needed to reflect the impact of the financial and economic crises, Femern A/S responds that no CBA study update was requested by the Ministry of transport as the Danish Parliament has already approved the decision to implement the project. However, the Danish Parliament requires an updated traffic forecast together with an update of investment costs once the project promoter presents the construction package to Parliament (in December 2014).

6.7. Related issues

6.7.1. Project critics and opponents

Critics and opponents of the Fehmarn Belt fixed link keep voicing their arguments against the project. The main arguments relate to unsound and outdated traffic forecasts as well as weaknesses and unrealistic assumptions in the cost-benefit analysis. They are partly echoed by individual MEPs. The European Greens, for example, argue:
In the CBA it is assumed that there would be no ferry operations after the opening of the fixed link; this assumption is not realistic.

The Hamburg rail knot is saturated; therefore the channelling of freight trains through this bottleneck does not make sense. A bypass to the east would be more suitable.

A link via Rostock would even be more suitable but the Danish government is opposed to this recommendation. Denmark is even removing rail tracks in that corridor.

The ferry operator SCANDLINES goes further by arguing that they are able to develop “zero emission ferries”, ready for operation by 2020\(^4\).

The first point of the European Greens relates to the traffic forecast of 2002, which forecasts a general demand for ferry services operating parallel to the fixed link, even though the conclusion that the commercial viability of continued ferry services is doubtful. The CBA report states; “the ferry supply is fixed at the same level as in the summer of 2002 except for the route Rødby-Puttgarden, which would be closed when the fixed link opens”. The same assumption was made in the case of the English Channel fixed link during the 1980s. Nevertheless, by investing heavily in modern large ferries, the ferry operators were able to resist Eurotunnel competition and maintain a substantial share of the cross-Channel passenger and freight transport market. It remains to be seen how the forthcoming updated traffic forecast deals with this issue. Earlier traffic forecasts for the Fehmarnbelt fixed link dealt with the question in a rather simplified way. The assumption that the present ferry operator would cease operations as soon as the tunnel opens for traffic may not be realistic.

The saturation of the Hamburg rail knot should also not be overlooked in the revision of the traffic forecast. Different options to increase its capacity or to bypass it are currently being discussed. An initial decision has been taken by DB AG and Hamburg City in July 2014 to relocate the station of Hamburg Altona to Diebsteich, with the new station becoming operational by 2023. We are not in a position to conclude whether this will be sufficient to handle increased rail freight traffic resulting from the implementation of the Fehmarn Belt Fixed Link.

Femern A/S states that after the Danish Parliament passed the legal act adopting the treaty between Denmark and Germany in March 2009, committing Denmark to implementing the coast–to-coast fixed link, there seems to be no clause for a revision of the basic parliamentary decision to go ahead with the project. However, before the presentation of the construction act in the Danish Parliament, Femern A/S will provide a full technical and environmental description, updated traffic forecasts; project cost calculations based on prices from the market, as well as other relevant information.

6.7.2. Hinterland rail connection projects

Germany has committed itself to building a double track electrified railway line between Lübeck and Puttgarden (apart from the bridge across the Fehmarn Sund). DB Netz is the implementation agency of this project which, according to preliminary estimates, will require an investment in the order of EUR 817 million (2003 price level). The technical

\(^{4}\) Tesch (2013).
planning is still at a very early stage. At present, the “Raumordnungsverfahren” (regional impact assessment procedure) is underway and is expected to be concluded in spring 2014. This will be followed with the choice of the alignment and of other technical parameters. Only then will a more reliable cost estimate be possible. For the time being there is no schedule for the plan approval procedure.

Within the framework of the revision of German transport infrastructure requirements, the federal Ministry of transport had commissioned a special CBA for the Lübeck - Puttgarden project following the standard CBA procedure of the Bundesverkehrswegeplanung (Federal transport infrastructure planning). Based on the assumption that the fixed link, as well as the Danish hinterland connection, are implemented, the CBA result would be highly positive. The German project would yield a benefit cost ratio of 6.7 on the basis of the above-mentioned investment cost of EUR 817 million\(^{45}\). It should be noted that in the calculation, savings of truck operating costs represent 92% of net benefits.

The upgrade of the Danish hinterland rail connection is scheduled for the period 2014-2020 with a budget of almost EUR 1.8 billion, to be financed by Denmark, with co-funding from the TEN-T/CEF programme.

6.7.3. Prospects for project implementation

The planned time schedule for the preparation of the Fehmarn Belt Fixed Link project as shown in Table C6-3 is still valid; the process may be slightly delayed by 2 months.

The German plan approval procedure, which is not included in the above schedule, is assumed to be on track.

6.8. Conclusions to be drawn

The Fehmarn Belt fixed link project was launched following the completion and operation of the Oresund fixed link in the year 2000. Retained as a TEN-T priority project in 2007, the combined rail & road project with access rail and road routes has been retained as part of the TEN-T core network for financing during the 2014 to 2020 cycle.

Originally envisaged as a joint Danish-German venture, the Danish parliament committed its government to financing and building the coast-to-coast fixed link with access routes in Denmark, while the German contribution is limited to the provision of the access infrastructure in Germany, particularly the upgrade of the rail link between Lübeck and Puttgarden.

On the Danish side, the project promoter, Femern SA, can build on the experience of planning and implementing the Oresund project as well as the Great Belt project. During the planning phase, Femern SA has demonstrated the capability of developing this megaproject without delays usually encountered in projects of similar size, notably the Brenner or the Lyon-Turin tunnel projects. The Danish government agency has commissioned all legally required studies which are available to the general public for download from the Femern website. Public consultations were held at various stages. The Danish public seems to accept the project without opposition as it is meant to be financed without taxpayers’ money, i.e. with capital market funding, albeit with the Danish

government guaranteeing the loans. The project is expected to repay the loans from traffic revenues. A significant contribution of EU funding is expected.

The Fehmarn Belt Fixed Link project is now entering its final phase of preparation. After the presentation of revised traffic forecasts and construction estimates to the Danish Parliament, the project is expected to be approved and construction to begin in 2015. First tenders for construction contracts have been issued. The implementation of the coast-to-coast project and the upgrading of the feeder lines on the Danish and German sides are expected to cost some EUR 10 billion.

Our assessment can be summarised as follows:

- The Fehmarn Belt project is mainly driven by political forces on the Danish side. The German government has withdrawn from the coast-to-coast fixed link project. Notwithstanding, opposition groups in Germany argue for the cancellation of the project. Critical arguments arise mainly from the German public where a strong opposition has been building up.

- The project is developed by a competent Danish government agency, Femern AS, building on the experience of two other large-scale fixed-link projects. The postponement of the opening date of the new infrastructure by three years (2021 instead of 2018) is rather modest compared to the delays encountered in many other EU supported projects.

- An inquiry into whether to develop the project as a private venture or as a public-private partnership was carried out in 2003. Although banks, construction companies and PPP promoters expressed keen interest, the result was inconclusive as the Danish and German governments failed, at the time, to commit themselves to a clear risk-sharing scheme.

- It must be borne in mind that the Fehmarn Belt fixed link would divert significant parts of freight traffic from the Great Belt to the Fehmarn Belt. Part of the Great Belt investment would thus become sunk costs.

- The economics of the project are unclear. Both the traffic forecast and cost-benefit analysis were last carried out more than 10 years ago. An update of the traffic forecast is currently being prepared but there are no plans for an update of the CBA, which is the crucial measure for assessing the socio-economic soundness of an infrastructure investment project.

- An independent audit of the forthcoming traffic forecast revision would be desirable; the audit ought to pay particular attention to the options of the ferry operator(s) to respond to the opening of the fixed link.

- The Hamburg rail knot is a neuralgic point of the German rail freight sector. Special attention ought to be given to the prospects of its capacity once the Fehmarn Belt crossing has become operational. How serious is Germany’s commitment to an upgrading of the Hamburg rail knot and the rail link between Lübeck and Puttgarden can be questioned? In the case of the Upper Rhine rail infrastructure upgrade, prior to the opening of the Gotthard alpine crossing, Germany demonstrates that commitments are not met in due time.

- The EU contribution to the financing of the project should be based on a sound assessment of cross-border and wider economic benefits.
Appendix 1: Chronology

1991: At the signing of the treaty on a fixed link of the Öresund between Denmark and Sweden in 1991, Denmark agreed to a fixed link across the Fehmarn Belt for road and rail transport between Germany and Denmark. The aim is to improve the transport of people and goods in an environmentally responsible and sustainable manner by shortening the route via the Great Belt and replacing the existing Fehmarn Belt rail ferry services.

1999: completion of technical, environmental and economic studies (see list of sources). The project consists of the coast-to-coast fixed link and the rail and road access lines on both sides including electrification. Various alternative technical solutions were investigated including cable-stayed or suspended bridge types and immersed or bored tunnel types at various levels of capacity (2 – 4 road lanes; 1-2 rail tracks).

2000: Danish-German memorandum to build the Fehmarn Belt fixed link

2001/2002: Enquiry of commercial interest into the implementation of a PPP project: the result of the enquiry was inconclusive since neither government wanted to commit themselves to a specific risk sharing concept.

2005: The Fehmarn Belt fixed link is listed as the main element of the TEN-T Priority Project n° 20. With the Öresund fixed link between Sweden and Denmark, which opened in July 2000, the Fehmarn Belt fixed link would complete the direct land corridor between Scandinavia and Central Europe.

2007: The Danish and German Ministers for Transport signed a declaration of intent on establishing a fixed link across the Fehmarn Belt.

2008/2009: State treaty on establishing a fixed link across the Fehmarn Belt, ratified by the Danish parliament on 26 March 2009 to coincide with the enactment of the Danish Planning Act by the German parliament on 18 June 2009.

2010: In May 2010 the State of Schleswig-Holstein launched a regional planning process (ROV) for the rail hinterland connections. Furthermore the effects on human health, soil, water, air, climate, landscape, animals, plants and ecosystems, which in their turn have an impact on tourism and municipal developments resulting from route closures or common developments were investigated.

2011: The Danish Minister for Transport declared the immersed tunnel solution as being the preferred crossing. A preferred alternative variant is the bridge solution. Rødbyhavn was fixed as the only production site for the tunnel on grounds of the EU Directive 85/337/EEC ("the EIA Directive"). As a consequence environmental impact assessments (EIA) had to be conducted for this part.

The Budget Committee of the Danish Parliament approved an increasing of the budget for the planning exercise. This allowed Femern A/S to prepare the building of civil engineering construction work and start planning a security system for vessel-traffic during construction.
In August 2011, Femern A/S published consolidated management accounts. Thereafter the cost for the immersed tunnel was estimated at EUR 5.5 billion and the Danish hinterland connections at approximately EUR 1.1 billion (2008 prices). The amortisation period is estimated to be 39 years.

2012: Consolidated technical report in which the main characteristics of the possible variants of immersed tunnel crossing, cable-stayed bridge, suspension bridge and bored tunnel are discussed.

2013: After the completion of the EIA, plan approval procedures have been initiated in Denmark by Femern A/S, and in Germany by the State of Schleswig-Holstein.

Tender procedures have started with prequalification of candidates; short-listed candidates are preparing tenders for submission in 2014.
Appendix 2: References

<table>
<thead>
<tr>
<th>Year</th>
<th>Type</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>Technical, environmental</td>
<td>Femern A/S (2010b): The preferred technical solution for the EIA process – the recommendation of Femern A/S + 8 appendices, November 2010</td>
</tr>
<tr>
<td>2009</td>
<td>Planning Act</td>
<td>Act on Project Planning for a Fixed Link over the Fehmarn Belt, with Associated Land Facilities in Denmark, 15 April 2009</td>
</tr>
<tr>
<td>2008</td>
<td>Treaty</td>
<td>Treaty of 3 September 2008 between the Kingdom of Denmark and the Federal Republic of Germany on a fixed link across the Fehmarnbelt</td>
</tr>
<tr>
<td>2007</td>
<td>Memorandum of Understanding</td>
<td>Memorandum of Understanding regarding a treaty on a fixed link across the Fehmarnbelt between the Federal Republic of Germany and the Kingdom of Denmark, Berlin 29 June 2007</td>
</tr>
<tr>
<td>Year</td>
<td>Type</td>
<td>Description</td>
</tr>
<tr>
<td>------</td>
<td>---------------</td>
<td>---</td>
</tr>
</tbody>
</table>

Source: Femern A/S (http://www.femern.com/service-menu/publications) and others.
ANNEX 7. TWO TUNNELS ON SE40 EXPRESSWAY SEVILLA-HUELVA

Table C7-1: Project summary two tunnels of SE40 Expressway Sevilla-Huelva

<table>
<thead>
<tr>
<th>Aspect</th>
<th>Description</th>
<th>Aspect</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Title</td>
<td>Construction works of two road sections of a ring road around Seville (two tunnels)</td>
<td>TEN-T code</td>
<td>2009-ES-08092-E</td>
</tr>
<tr>
<td>Countries / area</td>
<td>Spain</td>
<td>Start date</td>
<td>June 2009 (official)</td>
</tr>
<tr>
<td>Mode(s)</td>
<td>Road with tunnel section</td>
<td>End date</td>
<td>December 2010 (official)</td>
</tr>
<tr>
<td>Managing authority</td>
<td>Sociedad Estatal de Infraestructuras de Transporte (SEITT); Ministerio de Fomento</td>
<td>Duration</td>
<td>1 year 7 mth.</td>
</tr>
<tr>
<td>Delay (mth)</td>
<td>Significant</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Investment cost (m€)</td>
<td>239.69 (total project cost 525)</td>
<td>Length (km)</td>
<td>2.76 (north) 4.14 (south)</td>
</tr>
<tr>
<td>EC funding TEN-T (m€)</td>
<td>23.969</td>
<td>EC share</td>
<td>10% (~5% of total cost)</td>
</tr>
<tr>
<td>Funding agent 1</td>
<td>Ministry of Public Works and Transport (Ministerio de Fomento)</td>
<td>Value (m€)</td>
<td>215.72</td>
</tr>
<tr>
<td>Funding agent 2</td>
<td>European Commission TEN-T European Economic Recovery Prog.</td>
<td>Value (m€)</td>
<td>23.97</td>
</tr>
<tr>
<td>Cost-bene-fit-analysis</td>
<td>National Guideline by the “Servicio de Planteamiento de Dir. Gral. de Carreteras” and conducted by the AYESA firm</td>
<td>CBA ratio</td>
<td>6.36 (6.04 to 6.54)</td>
</tr>
<tr>
<td>Public y/n</td>
<td>« yes »</td>
<td>Dated from</td>
<td>Undated (2008)</td>
</tr>
<tr>
<td>Transport scenario</td>
<td>Forecast until 2023. Source unclear. Updated forecast until 2030 from 2008.</td>
<td>Ext. cost (m€)</td>
<td>Not quantified in monetary units (except for environm.)</td>
</tr>
<tr>
<td>Externality covered</td>
<td>Analyses divided in: Physical, Biological, Socio-economic, Cultural and Patrimony, and Landscape</td>
<td>Payback</td>
<td>7 years</td>
</tr>
<tr>
<td>EIA</td>
<td>Yes (for the whole SE 40 project)</td>
<td>FIRR</td>
<td>26.31%</td>
</tr>
<tr>
<td>CIA</td>
<td>Not included</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Financial analysis</td>
<td>Made by the AYESA firm together with the CBA (see above)</td>
<td>Cost overrun (m€)</td>
<td>Not available</td>
</tr>
<tr>
<td>Ex-post evaluation</td>
<td>Proposed guidelines for ex-post environmental assessment: "Programa de vigilancia y seguimiento ambiental"</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source: m€ = million Euro, own analysis.
The project SE-40 Expressway Seville-Huelva is part of the longer road section Cordoba-Seville-Huelva that in turn forms part of the European priority project 8. Actually, SE-40 constitutes a ring road around the City of Seville. The funded project, analysed by this case study, concerns the construction of a tunnel crossing under the River Guadalquivir which is a section of this ring road SE-40 in the southwest of Seville.

The tunnel crossing is split into two parts, of which the northern part has a length of 2.76 km and the southern part of 4.14 km. In narrow terms this section would not have been part of priority project 8, which passes Seville in the northwest, while the project of the two tunnels is located in the southwest of Seville. However, the TEN-T funding provided for the construction of the two tunnels comes from the European Economic Recovery Plan (EERP), i.e. the economic stimulus package that was defined in 2009 to mitigate the economic crisis of the years 2008/09. In that sense the project fulfilled the funding criteria; the Ministry of Public Works and Transport (MinFOM) published the call for proposals for the northern tunnel (MinFOM 2008a) as well as for the southern tunnel (MinFOM 2008b) as early as 2008. Thus, it was deemed to be sufficiently mature to spend the economic stimulus money during 2009 and 2010. However, the mid-term review of the EERP reports a completion date of 2014 and states that “The eligibility period has elapsed without the project having made significant progress or meeting its objectives.” (Giorgi 2011, p.53). On the other hand, the SEITT (Sociedad Estatal de Infraestructuras del Transporte Terrestre) reported in 2012 on their website that the project is still being executed (SEITT 2012).

7.1. Methodology and comments on the CBA and project selection

We obtained the economic analysis of an upgrade of the northern part of the SE-40 ring road from the Spanish authorities. This is actually part of the priority project 8 as it connects the motorway from the southwest coming from Huelva with the motorway towards Cordoba in the northwest passing Seville via the SE-40 ring road (Ayesa undated). The cost analysis differentiated the construction cost of three main route options with a total of 12 sub-options. For the transport demand analysis different options for further sections of the SE-40 are also considered, i.e. 4 main route options for the western section and 2 main route options for the south-western sections (i.e. the section including the two tunnels). Ten combinations of main route options for the three sections have been tested. Others are similar to one of these 10 combinations or were not feasible.

The CBA has been conducted applying a national guideline for a benefit analysis recommended by the national road planning bureau (Recomendaciones para la evaluacion economica coste-beneficio de estudios y proyectos de carreteras, published by Servicio de Planeamiento de la Direccion General de Carreteras). The transport demand scenario was forecasted for the years 2003, 2008, 2013 and 2023. Potential benefits are estimated for the following categories:
• Transport cost of car users including vehicle cost, fuel cost (between 29.6 and 30.2 pts/l), cost of lubricants (between 512 and 570 pts/l) and cost of tyres.

• Time savings applying a value of time between 1 965 and 3 475 pts/h in 1998 values (about 11.8 to 20.8 €/h).

• Cost of accidents applying a cost value of PTS 34 million per death and of PTS 4.5 million per injured person in 1998 values (i.e. about EUR 204 000 per death and EUR 27 000 per injured person).

For all the upgraded/new sections of the SE-40 ring road (north, west and southwest part i.e. including the two tunnels) the benefit cost ratio is estimated at 6.36, with the (financial) internal rate of return at 26.31% and the payback period at seven years. The 12 sub-options for the northern part of the SE-40 were also estimated individually with benefit-cost ratios between 3.67 and 10.40, and FIRRs between 15.74% and 34.07%. The discount rate applied was 3.5% (Ayesa undated).

There has been an updated economic analysis that seems to build on Ayesa (undated) and includes specific estimates for the two tunnel sections. The methodological approach is the same as described above and the benefit-cost ratio for the tunnel sections was estimated to be between 6.04 and 6.54 (N.N. undated).

7.2. Methodology and comments on the environmental analysis

The environmental impact analysis (EIA) seems to be thorough, based on the state-of-the art of the late 1990s. It was carried out on the basis of Spanish legislation from 1986 to 1988 (N.N. 1999). It analysed 12 different route options and compensation measures for adverse environmental impacts. Out of these 12 options, 8 were determined as not being feasible due to environmental concerns. The remaining 4 options were ranked and the option with the most limited environmental impact is proposed (option 5).

For all 12 options, measures to mitigate and compensate environmental impacts were also assessed. The compensation measures would have cost in the range of PTS 270 and PTS 380 million (about EUR 1.6 to 2.3 million). The proposed option 5 resulted in mitigation costs of about PTS 307 million (about EUR 1.8 million), roughly in the middle of this range.

Analysed environmental impacts included:

• Impacts on atmosphere (pollutants), hydrology, geology and climatic conditions (not emissions of greenhouse gases).

• Impacts on flora and fauna,

• Impacts on health and territorial planning,

• Cultural heritage,

• Nature and landscape, and

• Erosion and impacts of geological risks.

Climate impact assessment was not part of the EIA, not even in terms of potential changes of emissions of greenhouse gases.
7.3. **Characteristics of the transport demand scenario and its economic drivers**

Two different transport demand scenarios were used for the studies on the SE-40. One scenario that seems to stem from around 2000 and provides transport demand projections until 2023 with intermediate years 2003, 2008 and 2013 is used in the economic analyses by Ayesa (undated) and N.N. (undated). The same transport projections were used for the Environmental Impact Analysis, that seem to stem from the same period (N.N. 1999).

An update of the transport demand scenario was prepared in 2008 (Ayesa 2008) to estimate the cost of the equipment and installations to be implemented in the two tunnels. The forecast was projected until 2030 but it is not known whether there is an update of the economic appraisal using these transport projections. It should be also pointed out that this revised transport forecast does not include the impacts of the financial crisis of 2008/09. We also could not determine whether this update incorporated the Spanish strategic infrastructure plan of 2005, known as PEIT (MinFOM 2005).

7.4. **Investment cost and structure of financing**

The investment cost estimates have changed slightly over recent years. The history can be detected from three sources provided by the Spanish authorities on the internet. For the northern tunnel of the southwest part of the SE-40 this development reads:

- Call for proposals 2008 (MinFOM 2008a): EUR 233 million (excl. VAT).

For the southern tunnel of the southwest part of the SE-40 the cost development reads:

- Website of projects of SEITT (Sociedad Estatal de Infraestructuras del Transporte Terrestre 2012): EUR 280 million (incl. VAT).

In both cases, it seems that the initial cost estimate was higher than the offers obtained from the successful bidders. This could be the result of the economic crisis of 2008/09, of the tough competition on the Spanish market, or of both.

According to the SEITT data, the two tunnel sections will together cost EUR 525 million including VAT. This is significantly above the cost listed by the TEN-T EA of EUR 239 million. However, the TEN-T EA fiche explains that these costs would cover only the first part of the works. Thus the 10% TEN-T funding of EUR 24 million would amount only to roughly 5% of the project cost.

7.5. **Developments since the last study**

Contacts were maintained with the SEITT authorities. Unfortunately, according to their files, the status of the project is the same as in our previous report. Due to financial constraints, the civil works have been stopped and there is no further information on when they will start again.
Since 2011 many solutions have been discussed by the current and former Ministries (Limón, 2011; El País, 2012). These include bridges, reducing the number of lanes of the tunnels, reducing the number of tunnels etc, and even terminating the contract with the construction companies to start all over again (Fernández Magariño, 2013). However, none of these alternatives have been approved and there seem to be no studies that could corroborate the feasibility of these alternatives. Recently an article in a Spanish newspaper was published regarding cost overruns in construction, which was especially notable in public projects (Cordero, 2014). The article mentions that in 2008 the EU demanded that Spain abandoned the policy of modifying contracts to continually increase their original price without justification, or penalties would be issued. The result is that cost overruns cannot exceed 10% of the tender proposal. One of the interviewees of this article also indicated that Spanish legislation ranks the economic proposal higher than the technical proposal, which evidently runs the risk of being too naive. A part of the SE 40 ring road a revealed a cost overrun of around 35%, therefore the contracting procedure had to be reinitiated (El País, 2012). In fact, the budget of the whole SE 40 ring road triplicates the original one calculated a decade ago (Limón, 2013).

According to the SEITT (2013) the tunnels are still under construction and not yet finished. Table C7-2 presents the details according to this webpage (last updated on 30th September, 2013).

<table>
<thead>
<tr>
<th>Civil Works</th>
<th>Actual Budget (Tax included)</th>
<th>Company Awarded</th>
<th>Current State</th>
</tr>
</thead>
</table>

Source: SEITT online.

Although it seems that the projects are under construction, as a matter of fact they have been stopped and there is neither reprogramming information, nor official project amendments (Limón, 2013). Moreover, the project related to the tunnels’ installation works has been terminated by the enterprise (SEITT, 2013) (project number 20081041-C). The Major of Seville, Juan Ignacio Zoido, has declared in a recent symposium that the National Government should prioritise the building of this infrastructure (Agencias: Sevilla, 2013).

We also approached the “Ministerio de Hacienda y Administraciones Públicas” (Public Administration and Funding Ministry) through their webpage (Ministerio de Hacienda y Administraciones Públicas, online) and through direct contacts, but we were directed back to the SEITT. We have not received any information from the “Ministerio de Fomento” (Ministry of Civil Works) either. The information on their webpage regarding the project does not give any more detail (Ministerio de Fomento, online).

The NGO “Asociación de Defensa del Territorio del Aljarafe – ADTA” state that there would have been better and more sustainable alternatives, which could improve mobility in the area with a reduced level of investment, and most importantly, lessening the environmental
impacts (Limón, 2013). With regards to environmental impacts, they claim that the SE 40 ring road impacts ecological regeneration projects, such as the Pudio river regeneration project, which is also funded by the EU (Limón, 2012).

Modification of the Spanish law concerning the ex-post evaluation of environmental impacts of a transport infrastructure has recently been discussed and the agreed changes were published in the Official Deputy Bulletin (BOCG, 2013), known as “Strategic Environmental Assessment”. Therefore the tunnels will be subject to this new law, and may need to be modified to comply with these requirements.

Finally, according to the progress report related to the Priority Projects (2010, p.154), the PP8 regarding motorways are operational. This report reads: "On the Spanish side, the motorways linking Lisbon- La Coruña and Lisbon-Seville are now operational”.

Similar commentaries are written in the subsequent reports (TEN-T Trans-European Transport Network, 2012, p.83; TEN-T projects, online).

7.6. Conclusions to be drawn

The tunnel project along the SE 40 as well as the completion of the full SE 40 ring road is obviously on hold, and it remains unclear whether it will be completed. Public concern through the media promotes the debate on different alternatives although none of them have yet been officially studied or accepted.

Major economic problems, along with a complex engineering infrastructure, need to be analysed in detail. Instead of prolonging the pending status with an unfinished infrastructure and outstanding contracts, it would seem better to clarify the problems and develop solutions.

Concerning EC funding it seems that the agreed action could have been completed by starting a few metres of excavation. The question concerning the provision of EC co-funding remains open if no date has been agreed when the full infrastructure should be completed and become operational.
7.7. References

 http://ccaa.elpais.com/ccaa/2013/10/02/andalucia/1380736386_536582.html

- Cordero, D. (2014), *Cuando el sobrecoste forma parte del plan*. El País. Available at:
 http://sociedad.elpais.com/sociedad/2014/02/03/actualidad/1391459849_523014.html

 http://ccaa.elpais.com/ccaa/2012/02/22/andalucia/1329934417_065983.html

 http://cincodias.com/cincodias/2013/01/15/empresas/1358420348_850215.html

 http://www.seitt.es/SEITT/LANG_CASTELLANO/LIS TADOS/ActuacionesCarreteras.htm

- Ministerio de Hacienda y Administraciones Públicas (online), *DGFC: Dirección General de Fondos Comunitarios*.

- N.N. (undated), *E14-SE-15, ANEJO Nº B-9, VALORACION DE OPCIONES Y RENTABILIDAD*.

 DG Mobility and Transport.

- SEITT - Sociedad Estatal de Infraestructuras del Transporte Terrestre (2012), *Listado de actuaciones de carreteras*.

 http://www.seitt.es/SEITT/LANG_CASTELLANO/CONTRATACION/LICITACIONES_OBRAS/

- SEITT (online)
 http://www.seitt.es/SEITT/LANG_CASTELLANO/LISTADOS/ActuacionesCarreteras.htm

- TEN-T projects (online). *Project 2009-ES-08092-E*

 November 2012.
ANNEX 8. A11 MOTORWAY FROM BERLIN TO POLISH BORDER

Table C8-1: Project summary of A11 motorway from Berlin to the Polish border

<table>
<thead>
<tr>
<th>Aspect</th>
<th>Description</th>
<th>Aspect</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Title</td>
<td>Construction works on the A11 motorway Berlin-Polish border</td>
<td>TEN-T code</td>
<td>2000-DE-316-P</td>
</tr>
<tr>
<td>Countries / area</td>
<td>Germany (DE)</td>
<td>Start date</td>
<td>2000 (1996)</td>
</tr>
<tr>
<td>Mode(s)</td>
<td>Road</td>
<td>End date</td>
<td>2010 (2014)</td>
</tr>
<tr>
<td>Managing authority</td>
<td>Ministry of Transport Brandenburg</td>
<td>Duration</td>
<td>11 (19)</td>
</tr>
<tr>
<td></td>
<td>Ministry of Transport Mecklenburg-Vorpommern</td>
<td>Delay (mth)</td>
<td>(48)</td>
</tr>
<tr>
<td>Included in TEN-T</td>
<td>Part of TEN-T road network in 1996 (TEN-T Guidelines EC Decision 1692/96/EC)</td>
<td>TEN-T element</td>
<td>Comprehensive</td>
</tr>
<tr>
<td>Investment cost (m€)</td>
<td>131.5</td>
<td>Length (km)</td>
<td>110</td>
</tr>
<tr>
<td>EC funding TEN-T (m€)</td>
<td>10</td>
<td>EC share</td>
<td>7.6%</td>
</tr>
<tr>
<td>EC funding Cohes. (m€)</td>
<td>0</td>
<td>EC share</td>
<td>0</td>
</tr>
<tr>
<td>Funding agent 1</td>
<td>German Federal Ministry of Transport</td>
<td>Value (m€)</td>
<td>121.5</td>
</tr>
<tr>
<td>Funding agent 2</td>
<td>European Commission</td>
<td>Value (m€)</td>
<td>10</td>
</tr>
<tr>
<td>Cost-benefit-analysis</td>
<td>Missing for the basic decision to renew A11 motorway</td>
<td>CBA ratio</td>
<td></td>
</tr>
<tr>
<td>Externality covered</td>
<td>Water, soil, climatic conditions, flora and fauna, nature and landscape</td>
<td>Ext. cost (m€)</td>
<td>Not quantified</td>
</tr>
<tr>
<td>EIA</td>
<td>Plan approval procedure of several sections of A11 (Landschaftspflegerischer Begleitplan Grundhafter Ausbau BAB 11)</td>
<td>Public y/n</td>
<td>(y)</td>
</tr>
<tr>
<td>CIA</td>
<td>Could not be identified – not in EIA</td>
<td>Public y/n</td>
<td></td>
</tr>
<tr>
<td>Financial analysis</td>
<td>Missing</td>
<td>Expected RoI</td>
<td></td>
</tr>
<tr>
<td>Ex-post evaluation</td>
<td>Missing</td>
<td>Cost over-run (m€)</td>
<td></td>
</tr>
</tbody>
</table>

Source: own analysis.
The A11 motorway dates back to the 1930’s connecting Berlin with Szczecin in Poland. Today the section from Berlin to the Polish border constitutes the motorway A11 in Germany. This in turn forms part of the European Highway E28 that should connect Germany via Poland to the Baltic States. Though the concept of this east-west axis has existed since the 1930s, the whole motorway has not yet been completed. Until 1990 very little effort was made to maintain or extend the A11 motorway.

After the German reunification in 1990 the German government defined the so-called “Verkehrsprojekte Deutsche Einheit” (VDE) (transport projects to implement German reunification), of which a large part was to renew poorly maintained existing transport infrastructure, and, where necessary, increase capacity to accommodate the expected transport growth between Western and Eastern Germany, and eastwards towards neighbouring countries. The latter became an even higher priority after the decision that eastern neighbouring countries would accede to the EU. Since 1996 the A11 has been continuously renewed, section-by-section, but even until 2007 there were sections still constructed from the concrete slabs of the 1930s. Completion of the renewal, building new paving, adding emergency lanes, re-constructing all bridges and adding new ones, including green bridges to allow animal crossings, is expected to last until 2014.

After 1945 on the Polish side of the border, the destroyed bridge across the river Oder firstly had to be rebuilt. After that there were plans to complete the motorway up to Kaliningrad, but nothing happened until the fall of the iron curtain in 1990. The Polish section of the motorway is currently called the A6 and since 2011 construction works have been ongoing. It is now planned to extend this motorway as part of the European Highway E28, as was originally planned before the Second World War.

8.1. Methodology and comments on the CBA and project selection

The A11 is connected with the so-called “Verkehrsprojekte Deutsche Einheit” (VDE), although not strictly part of it. However, VDE progress reports on the A20 motorway often include the Lübeck to Stettin (Szczecin) connection part of the A11 (Bundesregierung/BMVBS 2002, 2006). The “Verkehrsprojekte Deutsche Einheit” (VDE), which comprised 17 projects to re-establish the transport connections between West and East Germany (9 rail projects, 7 road projects and one inland waterway project), were decided upon within a period of 6 months between 3rd October 1990 and 9th April 1991. The projects were a political decision to react on the rapid and unexpected German reunification process and no CBA was generated. During these 6 months the initial cost estimate for the 7 road projects was about EUR 12 billion. Up until the projects were almost complete in 2010, the cost increased by about 40% to EUR 16.6 billion, which was particularly due to the construction of tunnels required in hilly areas (DEGES 2011). However, even though no CBA was carried out for the basic decision to build the VDE projects, at least a plan-approval procedure was conducted for the decision on exact routes.
The part of A 11 which received funding from TEN-T was built between 2000 and 2010 at a total cost of EUR 131.5 million. It was supported by a TEN-T budget of EUR 10 million. We could not obtain a CBA on that project, which essentially represented the renewal of a deteriorated infrastructure rather than the construction of a new infrastructure.

8.2. Methodology and comments on the environmental analysis

The plan approval procedure for the A11 was split into five sections, for which we obtained the EIA, and a remaining part of about 20 km length for which no EIA was available. A separate EIA was carried out for each section following the German guidelines (German Transport Authorities, undated). The impacts considered included impacts on water, soil, climatic conditions, flora and fauna, nature and landscape. Two patterns can be observed in the assessment of the different sections: on the one hand the impacts were assessed considered to be minimal as construction of the A11 in the 1930s had already caused impacts on, and a separation of, the living space on both sides of it. On the other hand the areas crossed by the A11 are sparsely populated and several sites of ecologic importance have been identified and needed to be considered during the plan-approval procedures.

Neither emissions of greenhouse gases nor life-cycle impacts on CO₂ emissions of infrastructure or vehicles were considered in the EIAs.

All impacts were only assessed qualitatively. Monetisation of externalities and potential inclusion in a CBA were not incorporated into the EIAs.

8.3. Characteristic of the transport demand scenario and its economic drivers

The initial decision on the VDE in 1990 was underpinned by expert opinions, which also included judgements on transport forecasts. It was only in 1992, when the revision of the German Federal Transport Infrastructure Plan was published, that a transport forecast considering the German reunification of 1990 was developed. This forecast was updated for the revision of the Federal Transport Infrastructure Plan in 2003, followed by another revision in 2007 (BMVBS 2007). We are not aware whether or how these forecasts affected the planning and construction of A11.

Compared to the speed of implementation of other VDE projects, it seems that the forecast for the A11 is very moderate. While the motorways connecting East and West Germany were completed years ago, more than 20 years after reunification some sections of the A11 are still being renewed. This highlights the importance for the European decision-makers to closely look at cross-border projects, to which A11 belongs, as for these the national interest often is lower than for other national projects.

8.4. Investment cost and structure of financing

The reported investment costs were EUR 131.5 million, of which EUR 121.5 million were funded by the German Federal Ministry of Transport and Housing and another EUR 10 million by the European Commission (2011). However, the total costs are yet unknown as renewal of the final sections of A11 is still ongoing, and according to latest information might even continue until 2016.
8.5. Cost developments over the life-cycle of the project

There is no existing source of the time profile of cost of the A11. On average the VDE road projects faced a cost increase of 40%. In the case of A11 the long duration of planning and construction will probably contribute to cost increases, although not one source could be identified that estimated costs for the whole project (110 km).

8.6. Development since the last study

After 29 months of construction, the “Kreuz Barnim” interchange was completed at the end of 2013 and has now replaced the former “Dreieck Schwanebeck” interchange. The new interchange connects the southern end of the A11 to the A10 federal highway and to the B2 federal road. The construction costs increased from EUR 45 million to EUR 57.5 million (about +28%), of which EUR 20 million (i.e. 35%) was funded by the European Regional Development Fund (ERDF). The remainder was financed by German federal means (BZ 2012, BM 2013).

The following construction works were carried out during 2013 on the A11 itself: (i) elementary upgrade from “Kreuz Uckermark” interchange to the Brandenburg/Mecklenburg-Vorpommern border, (ii) construction of the “Melzower Forst” wildlife crossing. An elementary upgrade from junction “Lanke” to junction “Britz” is also planned for implementation in 2016. All these measures are entirely funded by the German government.

8.7. References

- German Transport Authorities (undated), Landschaftspflegerischer Begleitplan – Grundhafter Ausbau der BAB 11. Excerpt of EIA on several sections of A11.
ANNEX 9. LYON-TURIN BASE TUNNEL

Table C9-1: Project summary Lyon-Turin base tunnel (part of link Lyon-Turin)

<table>
<thead>
<tr>
<th>Aspect</th>
<th>Description</th>
<th>Aspect</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Title</td>
<td>Lyon-Turin base tunnel (cross-border section)</td>
<td>TEN-T code</td>
<td>PP6, 2005-EU-603a-S, 2007-EU-06010-P amended 2009, 2013</td>
</tr>
<tr>
<td>Countries / area</td>
<td>France, Italy, Alpine area</td>
<td>Start date</td>
<td>1990: plans 2003: works</td>
</tr>
<tr>
<td>Mode(s)</td>
<td>Rail, high-speed and freight</td>
<td>End date</td>
<td>2020-2025</td>
</tr>
<tr>
<td>Managing authority</td>
<td>Lyon Turin Ferroviaire (LTF) (Alpetunnel from 1994 to 2001)</td>
<td>Duration</td>
<td>17 years</td>
</tr>
<tr>
<td>Included in TEN-T</td>
<td>Essen projects in 1994 (then in 2004: PP6)</td>
<td>Delay</td>
<td>5-15 years</td>
</tr>
<tr>
<td>Investment cost (m€)(2)</td>
<td>8 600 (23 000 to 26 000)</td>
<td>Length (km) (2)</td>
<td>57 km (257 km)</td>
</tr>
<tr>
<td>EC funding TEN-T (m€)</td>
<td>2007 – 2013(2015): 395 (planned 2014-2020: 3 400)</td>
<td>EC share</td>
<td>44.4% (40%)</td>
</tr>
<tr>
<td>Funding 1</td>
<td>Italian national government (2014-2020)</td>
<td>Value (m€) 1</td>
<td>2 900</td>
</tr>
<tr>
<td>Funding 2</td>
<td>French national government (2014-2020)</td>
<td>Value (m€) 2</td>
<td>2 400</td>
</tr>
<tr>
<td>Cost-benefit analysis</td>
<td>Until 2011 several CBA, but not public. 2011/12: CBA by Lyon-Turin Observatory related to project of 270 km length</td>
<td>NPV (m€)(1)</td>
<td>FR: 14,291 IT: 11,972</td>
</tr>
<tr>
<td>Transport scenario</td>
<td>CBA by Lyon-Turin Observatory (transport figures provided by LTF model)</td>
<td>Public y/n</td>
<td>Y</td>
</tr>
<tr>
<td>Externality covered</td>
<td>Air pollution, greenhouse gas, noise, accidents, congestion</td>
<td>Ext. cost (m€) (1)</td>
<td>FR: 13,149 IT: 11,891</td>
</tr>
<tr>
<td>EIA</td>
<td>Many detailed environmental analyses – unclear if full EIA exists</td>
<td>Public y/n</td>
<td>(N)</td>
</tr>
<tr>
<td>CIA</td>
<td>CO₂ savings as part of CBA, including construction phase</td>
<td>Public y/n</td>
<td>Y</td>
</tr>
<tr>
<td>Financial analysis</td>
<td>CBA by Lyon-Turin Observatory (figures provided by LTF)</td>
<td>IRR FR (1)</td>
<td>5.09</td>
</tr>
<tr>
<td>Ex-post evaluation</td>
<td>n.a.</td>
<td>IRR IT (1)</td>
<td>4.72</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cost overrun (m€)</td>
<td>n.a.</td>
</tr>
</tbody>
</table>

(1) Valuation with French or Italian valuation parameters.
(2) Values in brackets refer to the complete link between the nodes of Lyon and Turin.

Source: own analysis, various sources, main was the current CBA [Observatory 2012], m€ = million euro.
The Lyon-Turin base tunnel is part of the 257 km long railway connection between the cities of Lyon in France and Turin in Italy. The Lyon-Turin section was one of the 14 Essen projects agreed at an EU council summit in Essen in 1994. In 2004 it became part of priority project 6 (PP6), being the railway axis Lyon-Budapest-Ukrainian border [EC Decision 884/2004/EC]. With the revised TEN-T guidelines in 2013 the Lyon-Turin section became part of the Mediterranean corridor [EC DEC 1315/2013].

Since the initial propositions to build a high-speed rail connection between Lyon and Turin which emerged around 1988-1990 the project has been re-designed many times. Today the cross-border section includes the 57 km long base tunnel to be bored between St. Jean de Maurienne in France and Susa in Italy as well as a second tunnel, the so-called 14 km long Orsiera tunnel (which replaced the 12 km long Bussoleno tunnel) to be bored in Italy. On the Italian side further construction works are planned towards and around Turin to connect the new line with the Turin-Milan-Venice line. In total 72 km of track would have to be built in Italy.

On the French side the access routes are split into the 75 km long new high-speed rail connection between Lyon and Chambery and a new freight line from Lyon to Combe de Savoie and from there to the entrance of the base tunnel in St. Jean de Maurienne. This amounts to a total of 120 km of new line including three long tunnels (Chartreuse: 16 km, Belledonne: 20 km, Dullin: 16 km) and a number of shorter tunnels. As of the beginning of 2014 the implementation of access routes on both sides of the base tunnel, i.e. in France and Italy, seems to have been postponed and will only recommence when future transport demand grows and sufficient national funding can be secured.
In addition to the tunnels for the tracks, four evacuation and safety tunnels and two passing tracks are planned for the 57 km long double tube base tunnel: St. Martin La Porte, La Praz, Modane and Venaus/Maddalena. These tunnels also have a length of up to 7 km. The maximum distance to a safety tunnel should stay at 14 km and every 333m cross passages between the two tubes are planned to facilitate an escape into the second tube in case of an accident or other emergency. The four access and safety tunnels would also provide ventilation for the base tunnel. The design speed is now fixed to 220 km/h [Odggaard 2007, Rudin/Peinke 2008, Brino et al. 2013]. It is estimated that about 300 km of new tunnels will have to be bored to implement the whole Lyon-Turin section, although the exact figure is difficult to verify as different numbers and lengths of tunnels are reported by different sources.

The initiative to propose a high-speed line from Lyon to Turin seems to have come from the French side in 1989 who wanted to extend their developing TGV network and link it with the Italian network. In Turin the Technocity association presented the concept of a 50 km tunnel to a group of experts and politicians in 1990. One year later, in both countries, committees supporting the tunnel were founded and the first feasibility study was conducted in 1991. References to such early studies quote cost estimates of EUR 3.7 billion for a line that would carry 7.7 million passengers and would roughly double rail freight transport to more than 18 million tons. That same year the first local committee to oppose the TAV (TAV = Treno Alta Velocita, High-Speed Train), called Habitat, was formed in the Susa Valley in Italy. The movement later on named itself No TAV [Allasio 2006, Cascetta/Pagliara 2011].

After Lyon-Turin became one of the 14 Essen projects in 1994 the Alpetunnel company was set-up by the French and Italian railways. Alpetunnel was supposed to manage the project development through the feasibility and planning phases. Between 1995 and 2001 Alpetunnel commissioned studies and exploratory bores that together with those drilled up to 2013 amounted to 50 km of bores. However, opposition increased after 1995 and the appraisal studies commissioned by Alpetunnel seemed not to provide support for the project, so the company was shut down in 2000/2001.

In 2001 (January 29th) the French and Italian governments signed an agreement for the construction of a new rail link between Lyon and Turin. A new French-Italian company was founded, Lyon Turin Ferroviaire (LTF), to promote and develop the project. The company is controlled jointly by Reseau Ferré de France (RFF) and Rete Ferroviara Italiana (RFI). LTF is responsible for the assessment, planning and implementation of the cross-border section of Lyon-Turin including the base tunnel. RFF is responsible for the same tasks for the two French sections connecting the base tunnel to Lyon, and RFI for the Italian section up to Turin. Until now LTF has remained responsible for promoting and developing the project of the cross-border section and thus the base tunnel below Mt. d’Ambin. At that time the plan was to make the Lyon-Turin link operational in 2015.

In 2003 the French Ministry of Equipment and Transport approved the pre-project studies and works on the 2.4 km long access and evacuation tunnel of Saint Martin La Porte in France could commence. This lasted until 2010. The 4 km long access tunnel of Modane was completed in 2007, and the 2.5 km long access tunnel of La Praz in 2009 such that on the French side, all three access tunnels were drilled down to the level of the base tunnel by mid 2010. The diameter of the access tunnels allows trucks to reach the level of the base tunnel. Boring works on the 7.5 km long exploratory tunnel of Maddalena on the Italian side - which will become the fourth access and evacuation tunnel to the base tunnel – did not begin until the end of 2012. This was because of the opposition of local stakeholders from the Susa Valley and its neighbouring regions as well as experts that
formed the No TAV movement. Such opposition was provoked by the Italian political decision process which mainly involved the upper hierarchy of policy-making, ignoring the local authorities and stakeholders. This will be discussed further below.

In 2004 the European Union re-designed the TEN-T networks by defining 30 priority projects and confirming the European interest in the Lyon-Turin rail link by making it a part of PP6 from Lyon to the Ukrainian border. The French and Italian governments then signed a Memorandum of Understanding to support, in equal measure, the investment in the Lyon-Turin link, with an expectation that the EU would co-fund 20% of the construction cost. Other sources report an agreement dated May 2004 according to which Italy would fund 63% of the cross-border section and France 37%.

In 2005 the situation escalated when the Italian government wanted to start exploratory works in the Susa Valley leading to what was called “the battle of Seghino” (31st October) and the “defense of Venaus” (6th December, which is documented at http://www.arcoiris.tv/scheda/it/5097/). These were conflicts with the No TAV movement who intended to block work on geo-technical core boring for preliminary studies in the locality of Mompantero, and on the construction of the exploratory tunnel [Marincioni/Appiotti 2009]. Four days later, the Italian Government set-up the “Lyon-Turin Environmental Observatory,” (hereinafter the “Observatory”), which was to act as an independent entity to facilitate the dialogue among the various high-speed rail stakeholders. At the end of 2006 the Observatory started a dialogue with local and regional authorities, representatives of the municipalities and invited experts to develop a joint approach that would be acceptable to all stakeholders. In 2008 it produced a new preliminary project definition shifting the alignment of the tracks in the Susa Valley from the left side of the valley to the right side. The results of the dialogue were then published in seven Quadernos by the observatory. The preliminary design was made subject to further studies and in particular laid the ground for the, as yet still unavailable, public cost-benefit analysis (CBA). This CBA was later on published as the 8th Quaderno by the Observatory at the beginning of 2012.

At the end of 2007 the French Prime Minister declared the public utility of the cross-border section of the Lyon-Turin project. The EU commenced its 2007 to 2013 budget period and decided to co-fund the Lyon-Turin base tunnel with EUR 671 million during that period, indicating that France should obtain EUR 234 million and Italy EUR 437 million. Together the French and Italian governments planned to spend EUR 1.4 billion by 2013. The EU supported both studies (at a co-funding rate of 50%) and construction works (at lower co-funding rates, currently 27%). Both studies and works were linked with planned milestones. For instance, the studies on developing the Maddalena gallery were assigned EUR 119 million connected with the milestone no. 10, and work was scheduled to start on 31st January 2010. Work actually started at the end of 2012. The first two substantial phases of construction work of the base tunnel were supposed to start in 2012 with a planned budget of EUR 212 million (phase 1) and in 2013 with EUR 1 143 million (phase 1 and 2 together). According to the milestones, the works of phase 1 should have started on 30th April 2012 [EC 2008]. The funding rules of the EU require that the activities are completed at the latest two years after the funding period ends, which would be 31st December 2015. Projects not achieving their milestones by then, risk losing at least part of their EU co-funding (N+2 rule). This could also mean that EC funds already received would need to be paid back at least in proportion to the incomplete activities. As it became apparent that the implementation of the base tunnel was delayed, the funding was revised to a total investment of EUR 890 million for the period 2007 to 2013 with an EU co-funding of EUR 395 million (about 44%) [EC 2013].
At the beginning of 2012 (30th January) the French and Italian governments signed a new treaty on the construction of the new Lyon-Turin rail link, which amends the Treaty of Turin from 2001 (see above). A major issue was to agree on the national share of funding of phase one, which essentially includes the base tunnel and a shortened version of the Orsiera tunnel (2 km length). France would contribute 42.1% and Italy 57.9% after deducting the EU contribution from the total investment cost. The full text of the agreement remained confidential until it was published by the opposing No TAV movement. The TEN-T coordinator of PP6 briefly summarised the content of the treaty in his annual statement in 2013 pointing out that a new governance structure will be established in which the European Commission will play a more relevant and decisive role [Brinkhorst 2013].

In 2012 the first official and public cost-benefit analysis (CBA) was published by the Observatory [Observatory 2012] and presented by the Italian government on 26th April 2012. The CBA refers to the full project of 270 km length and provides a socio-economic assessment for three scenarios differentiating the future economic development: permanent shock, lost decade and rebound, with lost decade being the median scenario. While the net present value of the permanent shock scenario of the whole Lyon-Turin link is negative, the other two scenarios would generate a benefit. The underlying time horizon assumes construction starts in 2013, operations begin in 2023 and costs and benefits should be considered until 2072.

In France a debate over the strategic planning of a sustainable transport system had also taken place. Building on the French National Infrastructure Plan (SNIT) the Commission Mobilité developed the infrastructure needs for a sustainable transport system in France. They classified infrastructures into (i) those to be built by 2030, (ii) those to be built between 2030 and 2050, and (iii) those relevant only in the longer term beyond 2050. Initially the Lyon-Turin link was classified into the latter category. Finally, it was decided to exclude the planned link from the evaluation, which meant it was not classified at all by the Commission Mobilité. The argument was that according to international legal agreements – those between France and Italy mentioned above and those with the EC - the decision to build the project had already been taken [Commission Mobilité 2013].

In 2012 the TEN-T coordinator of PP6 highlighted that the Lyon-Turin project was not beyond the “point of no return”. This statement was repeated in 2013, with the condition that it could become so if the political green light was given. This could have happened at a meeting of French and Italian leaders on 20th November 2013 [Brinkhorst 2012, 2013]. At this meeting, however, the French and Italian presidents confirmed their support of the project, although reasonable doubts as to whether the project will actually be built still exist today.

Over the whole process at least eleven options to align the route on the Italian part of the Lyon-Turin link have been proposed by different stakeholders including the promoters (Alpetunnel and LTF), industry and regional authorities [Virano 2012]. The planning situation today can be described as a phased approach in which the whole Lyon-Turin link of 257 km length could be implemented stepwise. Each additional step would only be implemented if transport demand was predicted to grow after each phase and if reasonable demand projections revealed that increased rail capacity would be needed on the link. The 57 km long base tunnel and a 2 km long Orsiera tunnel are planned to be built in the first implementation phase.
The flawed stakeholder process in Italy

The political situation concerning the new Lyon-Turin rail link differs substantially between France and Italy. In France the regional and local authorities were involved early in the project development and supported the project, while at national level the project was criticised as being too costly [Cour de Compte 2012]. It was claimed that more relevant and more beneficial transport projects would no longer receive funding as a large share of French infrastructure investment budget would need to be assigned to the Lyon-Turin link. In Italy it was the opposite situation: over the years all the national governments supported the project, while the Italian citizens, and in particular the local stakeholders of the Susa Valley had been opposed to the project since the beginning in the 1990s, when they formed the technical committee called Habitat.

In fact, the lack of stakeholder involvement on the Italian side of the Lyon-Turin link over 15 years became an issue analysed in depth by sociologists, who even argue that the project kicked-off a new citizens’ movement in Italy. This arose when the so-called No TAV movement connected with other movements e.g. those against the G8 summits in Italy as well as the Occupy protests occurring as a consequence of the financial crisis [e.g. Carls/Iamele 2011, Greyl et al. 2013].

Nevertheless, the No TAV movement and the Habitat Committee acted together at all available levels. This included:

- Peaceful resistance via demonstrations, marches, sit-ins and blockades.
- Addressing their opinions and arguments to all political levels including the EU.
- Contributing to the scientific debate with scientific papers and media articles.
- Acquiring land to strengthen their legal situation.

The detailed history of the conflict is also documented in a four volume series of books, where just the volume describing the decisive year 2005 until the setting-up of the observatory takes about 380 pages [Gino 2010].

Over 15 years the resistance of local opponents in the Susa Valley increased. Remarkable single events were bombings and sabotage activities during the second half of the 1990s; two of the accused persons seem to have committed suicide in 1998, while they were in jail. The most important mass protests took place at the end of 2005 and were called “the battle of Seghino” and the “defense of Venaus” (Marincioni/ Appiotti 2009) due to the massive deployment of police and the number of demonstrators that were reported to be as high as 70,000. Given that the lower part of the Susa Valley has a population of about 70,000 and the upper part about 13,000, it means that up to 80% of the local population could have participated. The demonstrators intended to prevent the construction workers from starting to bore exploratory holes from the Venaus site, and despite the police temporarily managing to clear the site, the demonstrators returned the next day and renewed their blockades. Thus a few days after the “defense of Venaus”, (6th December), the 3rd Berlusconi Government decided on 10th December 2005, to establish the “Lyon-Turin Environmental Observatory” (the Observatory), as an independent entity with the declared goal of facilitating a dialogue and exchange of arguments amongst the high-speed rail stakeholders, particularly including the local municipalities.

46 For an example see for instance: http://italycalling.wordpress.com/2011/11/17/occupy-everywhere-occupy-everything-november-17/#. For more information on No TAV see: http://www.notav.info.
At the beginning of 2006 the Winter Olympics took place in Turin, and the locations of the downhill sports events were to be reached via the Susa Valley. Thus the government asked for an Olympic truce for that period, which was accepted by the No TAV movement revealing their seriousness about the issues they raised concerning the rail project. The coincidence of the Olympics and the establishment of the Observatory took the heat out of the protests and started a new phase of open-minded debate.

The Committee on Petitions to the European Parliament reacted to the petitions from Habitat and others by sending a fact-finding mission to Turin and the Susa Valley in November 2005. The mission met both proponents and opponents of the project and was also an eye witness to the police activities against the No TAV blockade in Venaus on 29th November, just shortly before the events at Venaus of 6th December. They summarise the seven main arguments of the opponents in 2005 as [European Parliament 2006]:

- Uncertainty over the cost-benefit analysis.
- Refusal to upgrade the existing line.
- Hydrogeological risk to groundwater in the area.
- High noise levels in the Alpine valleys.
- Environmental risk due to asbestos and uranium in the debris.
- Dubious technical arrangements for the transport of the debris out of the tunnel.
- Inadequate compensation offered for the loss of value of surrounding property.

However, the Committee also notes that the big issue of debate is whether the project should be built at all rather than whether it should be built in a better or different way [European Parliament 2006].

Between 2006 and 2009 the Observatory managed to establish a process that was seen as sufficiently open and independent by most of the opponents (except the No TAV movement who remained absent). All parties were able to participate and contribute their arguments to the discussion process, which, as mandated by the Observatory, focussed on four debated issues: (i) the actual capacity of the existing line, (ii) the Alpine traffic including the forecast, (iii) the railway hub of Turin, and (iv) alternative routes of the Lyon-Turin link. Also, due to the innovative and creative role that the President of the Observatory Mario Virano played, the activities of the Observatory led to an agreement for a new alignment of the new Lyon-Turin railway through the Susa Valley. However, with local elections bringing new parties into municipal governments, including the No TAV movement and a territorial restructuring of municipalities, some opposing municipalities decided not to participate further in the Observatory meetings, such that after 2010 opposition again increased. During 2011/2012 there were renewed clashes between the police and the opposition to the new railway which increased again amounting to several tens of thousands of protesters [Maggiolini 2012].

One of the important reasons for Italian opposition seems to be the application of the rule to accelerate the implementation of infrastructures and manufacturing plants of national strategic interest (called legge obiettivo, Italian law 443 of 2001) by the government. As a consequence the standard environmental assessment procedures (e.g. for exploratory tunnels) and public participation tend to be avoided.
Apart from addressing the Committee of Petitions of the EP (see above) the opposition to NLTL (New Lyon-Turing Link) of the Susa Valley also addressed other policy-makers. In 2007 they made an appeal to the European Parliament not to decide in favour of funding the base tunnel from TEN-T funds for the period 2007 to 2013 [Sangone 2007]. In 2009 they addressed the TEN-T coordinator Laurens Brinkhorst to clearly express that no formal agreement on the NLTL between the local communities and the Italian government had ever been reached and to invite him to a joint conference [No TAV valleys 2009]. In 2011 they explained to European Commissioner Siim Kallas that the works at La Maddalena Gallery had not been started by 30th June 2011, a deadline set earlier by the EC. They also pointed out the additional cost of the police activities at the construction site, which were not accounted for in the cost estimates [No TAV valleys 2011]. In 2012 more than 350 scientists supporting the No TAV positions sent a letter to the Italian President Mario Monti to explain their positions on the flaws of the transport forecast, the lack of benefits of the project and that the project would have a negative energy balance [Ulgiati et al. 2012].

As the Habitat Committee, formed during the early 1990s, had a scientific background, they communicated their opposition to the NLTL in the scientific community from the beginning. Apart from the literature on the sociological and participatory aspects of the public debate quoted above [e.g. Marincioni/Appiotti [2009, Carls/Iamele 2011, Maggiolini 2012], discussion developed on the topic of the cost-benefit analysis. Aspects such as the assessment of transport benefits and transport forecast, the assessment of externalities questioning the energy and CO$_2$ savings of rail transport on a life-cycle base, were discussed, concluding that the project would just be a huge waste of tax payer’s money [Debernardi et al. 2011, Giunti et al. 2012, Grimaldi/Beria 2013, Maffii/Parolin 2013, Clerico et al. 2014].

9.1. Methodology and comments on the CBA and project selection

The project of a new link between Lyon and Turin to be constructed at a lower altitude (e.g. using a base tunnel) emerged at the end of the 1980s. In 1994 it was adopted by the EU Council as one of the 14 Essen projects. At that time there were seven criteria defined for the selection of projects by the so-called Christophersen Group though it was not specified in detail how these were to be met by each of the selected projects. A reduced set of criteria was applied by the so-called van Miert Group when the NLTL became part of the priority project 6 (PP6), although both processes resembled a political process rather than an analytical process, building on the selection criteria. However, for the revision of the TEN-T guidelines to be applied for the funding period 2014 until 2020 the EC has developed an analytic approach to define the Trans-European Transport Network (TEN-T). This was developed by a group of independent consultants [TML et al. 2010], debated and amended by the European Parliament [Koumoutsakos/Ertug 2012] and adopted by the Parliament and the Council as the new Union guidelines for the TEN-T [REG 1315/2013, European Parliament/Council 2013]. The NLTL fits into the newly defined selection process as it connects two node cities of the core network, i.e. Lyon and Turin, which definitely fulfill the criteria defined for being selected as a core node, as well as being two rail-road terminals of the core network. Accordingly, the Lyon-Turin link became a core element of the Mediterranean Corridor as well as connecting Italy with the North-Sea-Mediterranean Corridor. Thus the selection process of the link to become part of the core network was straightforward and in line with the new TEN-T guidelines.

Examining the options to select alternative routes, two existing ones remain: to the south the link Marseille to Genua via Ventimiglia and to the North the Lötschberg base tunnel.
The orientation of both of these differs from the Lyon-Turin route, where the former is clearly West-East and the latter North-South oriented while Lyon-Turin orientation is inbetween the two. There would also be the option to improve the existing rail line through the Mt. Cenis tunnel, and two new options: first, to strengthen the motorway of the sea from the West of the Mediterranean both to the Western and the Eastern coast of Italy, and second to choose another Alpine valley for the Alpine crossing between Lyon and Turin. To the best of our knowledge a CBA based comparison of these six alternative options has never been carried out. It should also be noted that a further development on the Lötschberg base tunnel, e.g. to improve access rail routes from Geneva, is not in the hands of the European Union and their Member States.

Reviewing the CBA of the NLTL, there seem to have been a number of socio-economic assessments in earlier years that have not been published e.g. in 1991, 2000 and 2006 (e.g. in 2000 Alpetunnel asked a Consortium to carry out a Feasibility study applying Cost Benefit Analysis and Option Value Theory), and which we were not able to obtain. One of the first publicly available CBAs on the NLTL was published by Prud’homme [2007]. He used a simplified approach considering investments, consumer and producer surplus, government revenues and externalities, building on rough hypotheses about these elements in the CBA. The calculations resemble a “back of the envelope” estimate. One of the major opportunity costs are the loss of fuel tax revenues due to savings of fuel from the modal-shift from road to rail. From today’s perspective, after having experienced the oil price peaks of 2008, the continued high oil prices and the energy crisis with Russia and the Ukraine, energy security has become one of the most important issues of governments and the EU. Any saved fossil fuel could be considered a contribution to improve energy security represented by a positive externality. In addition, the track charges from the railways are not accounted for, which could have been done in the same way as for road charges such that either the government or the infrastructure operators benefit (as it was done with the losses of the road charges at the Frejus tunnel). A discount rate of 4% seems rather high, compared with recommended discount rates in other countries such as Germany where the long-term infrastructure planning procedure suggests a rate of 3%. In the sustainability literature there are debates as to whether discount rates for long term damages should be applied at all (i.e. the conclusion would be to use a discount rate of close to 0%). Finally, Prud’homme has estimated a negative net-present value of about EUR -19 billion, which means that the investment would be a loss to society. However, this assessment should be treated with caution given the abovementioned simplifications.

In 2012 the Observatory published the CBA referring to the full implementation of the NLTL [Observatory 2012] in which two out of three scenarios, the lost decade and rebound, would generate a positive net-present value (NPV). The lost decade scenario would generate about EUR 14.3 billion using French parameter values and EUR 12 billion using Italian parameter values, and the equivalent figures for the rebound scenario would be EUR 27.1 and 24.8 billion. The permanent shock scenario generated negative NPVs of EUR -1.2 and -3.3 billion respectively. The start of construction was assumed to be 2013, start of operations during 2023 and the cost and benefits were calculated up until 2072. Involved experts criticised the lack of analysing of alternative options (e.g. assessing the improvement of the historic line) as well as the fact that the CBA did not comply with European recommendations provided by the EC DG REGIO guide for Cost-Benefit Analysis and the HEATCO project [Maffii 2012]. As an example, it was demonstrated that assumed reductions of accident rates in the CBA were over-optimistic leading to a threefold increase in the benefits through reductions of fatalities and injuries than would have been estimated with proper values. The value used to monetise the annual savings of CO₂ also seems extremely high to us (as if there is an error in expressing the units of measurement). The
French approach is quoted as saving a cost value of 0.008 euro/g CO₂, and the Italian approach saves 0.006 euro/g CO₂. Translating that into the more commonly applied unit of euro per ton of CO₂ saved, this would amount to a saving of 8,000 and 6,000 euro/t CO₂. Common values are in the range of 10 to 200 euro/t CO₂. The latter example was proposed by IWW et al. [1998], however more recent estimates indicate cost values at the lower end.

It should also be noted that for the assessment of such large scale projects the traditional approach of a link-based analysis of transport changes might be insufficient and that the assessment of wider economic benefits would be more appropriate [see e.g. Exel et al. 2002, Schade et al. 2013]. However, a standardised methodology for assessing wider economic benefits does not yet exist. An example of how such benefits could be measured applying an integrated assessment model, called ASTRA, was presented using the Lyon-Turin corridor as a case study [Schade 2006]. Using the 2004 investment figures of EUR 13 billion and the time savings, for example, of 2.15 h for passengers between Lyon and Turin, modal choice and export flows are affected by the new infrastructure. The ASTRA model allows us to estimate the macro-economic impacts of policies in terms of changes in GDP. Implementing the link Lyon-Turin using the cost and transport parameters of 2004 resulted in an accumulated increase in GDP of EU15 countries by EUR 61 billion over 15 years up to 2020, which indicates a macro-economic benefit of the new infrastructure. However, we acknowledge that apart from two different types of policies, no alternative uses of the invested money have been tested.

It should be noted that a financial analysis developed for the operation phase could not be identified. This is also highlighted by the opponents to the project.

9.2. Methodology and comments on the environmental analysis

The environmental analysis has so far consisted of many separate analyses to examine single aspects of the project e.g. exploratory bores to analyse the soil crossed by the base tunnel, analyses of the hydrogeology, etc. However, we were not able to assess whether an Environmental Impact Assessment (EIA) exists for the whole of the project. There are indications that there is no EIA for some parts of the Italian project e.g. the exploratory tunnel of Maddalena [European Parliament 2009].

There is no doubt that the construction of the base tunnel is facing environmental risks. The most relevant ones are:

- Some of the drilled rocks will contain asbestos.
- Some of the drilled rocks will contain uranium.
- The tunnel might change the hydrogeological conditions.

It seems to us that the risks have been analysed, although uncertainties remain about the actual impact on the hydrogeology.

Noise emissions form part of the debate. In general, the expectation seems to be that the increased traffic of the new line will affect the local population with higher noise levels. In our opinion this view neglects substantial benefits of the new line. First, due to the length of the planned base tunnel of 57 km as opposed to the length of 13.6 km of the Mt. Cenis tunnel an additional 43 km of railway line will be in a tunnel eliminating the noise emissions on that part of the track. Further, the modal-shift from trucks on the motorway through the
French and Italian valleys will reduce the noise from the motorway, a fact which often seems to be neglected in the debate.

The climate impact of the project was also a matter of intense debate. Savings of greenhouse gas emissions in general is a strong argument in favour of rail transport. This combines with the objective of the European strategy to shift transport from road to rail or from air to high-speed rail for passenger transport. Accordingly the CO$_2$ savings were considered as an element of the CBA resulting in an annual saving of 3 Mt CO$_2$ during the operation phase of NLTL. Additionally the CBA considered the CO$_2$ emissions due to the construction of the base tunnel concluding that after 23 years net savings of CO$_2$ will occur. As explained above, we believe the value given to these savings in the CBA is too high. On the other hand, the opponents to the base tunnel try to prove that rail freight transport is more CO$_2$ intense than road transport [Clerico et al. 2014, quoting Federici et al. 2008]. Of course, we agree that the correct approach to compare these modes is to apply a life-cycle approach. However, looking at other literature the conclusion is that HSR and/or rail freight are significantly more energy-efficient and CO$_2$-efficient than road transport, also from a life-cycle perspective [e.g. Åkerman 2011, Chang/Kendall 2011, Hill et al. 2012, ÖKO 2013]. It seems that some assumptions in Federici et al [2008] are either not justified (e.g. the share of truck weight on total weight of trucks of 22%, which should be more like 35 to 40%) or focus on a rather inefficient case study of rail transport. There is no liberalisation of the Italian rail market so, because competition is lacking, the offered services are inefficient revealing low occupancy rates and load factors. This in fact is an issue that also needs to be taken into account for Lyon-Turin: the investment in the base tunnel would only potentially become beneficial, when efficient and cost-effective rail freight transport can be operated on the link. The pre-requisite is that on both ends of the base tunnel, i.e. in France and Italy, the rail markets have actually been opened and competition is taking place such that a variety of efficient and cost-effective services will be offered, in particular for rail freight. This opening and liberalization of the rail freight market still needs to enfold over the next years in both countries.

In fact, despite the long debate on the Lyon-Turin link one strategic environmental issue seems to be missing: the long-term goals to reduce GHG emissions by at least 80% by 2050 compared with 1990 for industrial countries, to which Italy and France belong, will require electrified freight transport and not fossil fuelled trucks. In the debate on how to achieve these targets for freight transport other technological options have been analysed like hybrid electric freight trucks operating under a catenary or being fuelled by synthetic fuels produced by renewable electricity (e.g. wind gas) However, the easier and technically more convincing solution remains electrified freight rail with a modal-shift from truck to rail. In that sense, a debate considering fossil-fuelled trucks as a future sustainable solution is rather backward looking.
9.3. Characteristics of the transport demand scenario and its economic drivers

The transport forecast is the most questioned and questionable element of the assessment of the NLTL, particularly since previous forecasts always overestimated freight demand. Forecasts of the 1990s expected a growth of freight transport volume on the link between Lyon and Turin of about 70% between 1994 and 2015, even in less favourable conditions concerning the development of industrial production. They expected that freight travel time would be reduced from 5.10 h to 3.15 h. For the whole freight demand across Mt. Blanc, Mt. Frejus and Mt. Cenis a growth from 32.1 Mt/year in 1994 to 47.7 Mt/year in 2015 in a pessimistic scenario and 74.7 Mt/year in an optimistic scenario was expected [LET/Transalpe 1997].

The corresponding figures for passenger transport read as follows: today the TGV trip from Milan to Paris takes close to 7.5 hours of which about 4 hours are spent on the section between Turin and Lyon (TGV 9240, data provided by DB travel portal). About 2 h and 15 minutes of this could be saved by the NLTL alone, achieving a final travel time of 4 hours between Milan and Paris. There are three flights per day between Turin and Paris (each direction) and 12 flights between Milan and Paris (each direction, all flights).

The TEN-STAC study in 2004 analysed the 25 priority projects of the TEN-T, including the PP6, separating the section Lyon-Milan in their analyses. In the study a substantial number of scenarios were analysed and the presentation of results concentrated on the impacts of a PP alone and the impacts of all PPs altogether for a time horizon up until 2020. For that year a maximum rail freight demand of 23.3 Mt/year was expected if only the PP6 was built, and of 16.6 Mt/year if all other PPs including the Gotthard and the Brenner base tunnels were built. On average rail freight traffic would be 11.1 Mt/year and 6.8 Mt/year, respectively [NEA et al. 2004].

Over the past 15 years two disruptive events affected freight traffic on NLTL and complicated to elaborate projections of the future demand. The first was the disastrous fire in the Mt. Blanc tunnel in early 1999, which led to a closure of this road tunnel for about three years. During that period a substantial share of freight demand that would usually have passed through Mt. Blanc, shifted to the Frejus and Mt. Cenis tunnels (road and rail) increasing the demand on this section by more than 50% (in 2000 it amounted to 35.2 Mt/year according to CAFT). The second event was the partial closure of the Mt. Cenis railway tunnel due to renovation and enlargement. For a period of close to 10 years until 2012, for several hours per day, one direction of the tunnel was closed which negatively affected the capacity and reliability of the rail link [Observatory 2007, Virano 2012].

Closely linked with the debate of the transport forecast is the debate surrounding the capacity of the historic railway line through the Mt. Cenis tunnel. An often-quoted transport forecast developed by the LTF, the promoter of NLTL, estimates the freight transport demand in 2030 to be a volume of 16.4 Mt without the project and of 39.4 Mt per year with the NLTL [Allasio 2006, Observatory 2007]. In 2004 the demand was 6.5 Mt per year, however the temporary capacity limitations explained above should be taken into account as without them it could reasonably be expected that demand would have been higher. Concerning the capacity of the existing line through the Mt. Cenis tunnel, studies from 2000 and from 2004 report a potential capacity of 20 Mt per year (185 freight trains and 66 passenger trains per day) and of 27 Mt per year (150 freight trains and 70 passenger trains per day) [Allasio 2006, Observatory 2007]. According to these forecasts the capacity of the
existing line seems to be sufficient to cope with future demand, at least for the next two decades. However, the environmental problems mentioned in the previous section would be expected to be aggravated (i.e. noise from growing rail and truck traffic, long-term mitigation of climate change).

Other reports highlight that the capacity limitations for freight transport would first be observed on the rail node of the Turin metropolitan area with a capacity of up to 10 Mt of freight (about 60 freight trains per day) and neither on the existing line through the lower Susa Valley with a capacity of up to 28 Mt per year (about 160 freight trains per day) nor through the upper valley with a capacity of up to 32 Mt per year (about 180 freight trains per day), and corresponding numbers of passenger trains (174/94/46 passenger trains per day) [FARE 2008].

The traffic forecast underlying the CBA published in 2012 is provided by LTF and applies the same methodology as the earlier one debated by Quaderno 2 [Observatory 2007]. However, decelerated growth is also expected with the NLTL being built such that the demand of 40 Mt per year of freight on NLTL would only be reached in 2035 (i.e. 5 years later than estimated in earlier forecasts). Three different economic growth scenarios have been analysed in the CBA [Observatory 2012].

It should be noted that transport policy-making has significantly changed since the 1990s. Modal-shift and climate mitigation policies have become high-level strategies expressed by the last two transport White Papers of the EU (from 2001 and 2011). Accordingly rail projects are favoured over road projects, which in the case of NLTL would mean abandoning all projects extending the competing road capacity: The idea of new road capacities on the competing routes, even in the short and medium term, is not compatible with this project. A coherent approach as regards infrastructure charging is in addition necessary [Statement of the High Level Group on TEN-T concerning Lyon-Turin, HLG 2003, p. 34]. It seems that this strong and valid recommendation from 2003 has not sufficiently been taken into account, in particular with regard to the motorway through the Susa Valley and along the Mediterranean Coast passing Ventimiglia, when developing the Lyon-Turin project further.

The AlpFRail project also concludes that it will be most important for shifting demand to rail for the Lyon-Turin link that the operational measures to improve intermodal rail operations are implemented in parallel to the track infrastructure improvements. Only then will up to 100 additional freight trains per day be feasible to pass the link until 2020. There seems to be reasonable potential to shift freight from road to rail as the share of road freight being transported for distances longer than 500 km on the link is above 70% [AlpFRail 2007].

Switzerland is implementing the most ambitious modal-shift policy of all Alpine countries resulting in a rather environmentally friendly modal-split of freight transport compared with the Alpine traffic in Austria, France and Italy. Modal-share of rail freight in the inner Alpine arc is 63.4% in Switzerland, 26.8% in Austria and 15.1% in France (without traffic through Ventimiglia) [UVEK 2013]. Considering the whole French Alpine freight traffic (i.e. including traffic through Ventimiglia) the rail modal share only amounts to 8.4% in 2011 compared to 63.9% in Switzerland [EGIS et al 2013]. To successfully implement the modal-shift policy in Switzerland, the Swiss government regularly analyses and forecasts transport in the neighbouring countries and we recommend considering these studies when assessing the Lyon-Turin link. Concerning the traffic forecast the Swiss studies conclude that Italian exports suitable for rail freight will continue to grow moderately, particularly in relation to food and plastics [UVEK 2013]. Also the Swiss reports highlight that comparing the major
Alpine crossings for road freight the Ventimiglia route by far is the cheapest. Comparing representative freight connections of about 300 to 500 km length the average cost per km through Ventimiglia amounts to 0.36 €/km, while through the Gotthard tunnel it amounts to 0.57 €/km and through the Frejus tunnel to 1.68 €/km [UVEK 2013].

We conclude that the transport forecast, in particular for freight, seems to be on the optimistic side and that implementing the base tunnel alone will not be sufficient to attract such demand to rail. However, the examples of other countries, in particular Switzerland, reveal that rail modal shares three to six times higher than observed on the French-Italian connections would be achievable. These high rail modal shares are an outcome of the transport policy framework, including, apart from the rail infrastructure, policies affecting the cost and capacity of the competing modes. Obviously demand on an improved Lyon-Turin rail connection will be higher, if the motorway capacity through the Frejus tunnel is not increased in parallel and if the cost of road transport through Ventimiglia is not the cheapest of all Alpine crossings. Therefore, implementing the new Lyon-Turin base tunnel and the whole connection between the nodes of Lyon and Turin enables the whole policy framework between Ventimiglia and the Mt. Blanc to be corrected, setting incentives for a modal-shift towards rail away from trucks for long distances. This policy effort is still pending, and without such an effort the investment into Lyon-Turin should be questioned.

9.4. Investment cost and structure of financing

The first proposals for implementing the NLTL provided estimates of investment cost. Whether these were estimated through a detailed planning and engineering approach or from rough estimates building on average cost figures remains unclear to us. Over the past 20 years the investment cost has continuously increased, though a comparison seems risky as the size of the project has also increased by adding further elements (e.g. new tunnels, new stations, etc.). First estimates during the 1990s calculated a cost of EUR 3.7 billion [Allasio 2006]. The investment cost estimate had increased to EUR 13 billion by 2004 [Schade 2006]. The cost-benefit analysis built on estimates of EUR 23.6 billion in values of 2010 [Observatory 2012], while the French Court of Auditors reported a cost of EUR 26.1 billion in 2012 [Cour de Compte 2012]. Taking into account the cost increase over the 20 years from 1991 to 2010, the average annual growth of cost in nominal terms was about 10%, which is significantly higher than inflation during that period (in France inflation was between 0.5% and 2.5% annually and in Italy between 1% and 5.5%). This reveals that the cost estimate of the project has continuously increased and that any decision taken earlier than 2010 was built on preliminary plans and estimates of investment costs.

However, it seems that due to the effort of project (re-)definition during 2007 to 2010 the CBA published in 2012 is now building on more solid planning. Though it should be reckoned that due to the phased implementation approach, which given the uncertainties of demand development seems a reasonable approach, the actual cost of parts of the line to be built further into the future will continue to increase. Ensurances are needed that future increases will only be driven either by taking into account inflation or by adding new elements to the project rather than by insufficient planning of the project, underestimating the cost of today’s plans.

The first implementation phase will include the base tunnel plus a part of the Orsiera tunnel. Together these would come to a cost of EUR 10.5 billion of which the base tunnel would amount to EUR 8.2 billion. Works on the base tunnel will be co-funded to a share of 40% by the European Commission (EUR 3.28 billion). The remaining budget will be shared
57.9% to 42.1% between Italy and France. Private funding is not foreseen. The cost of the base tunnel per km of tube amounting to EUR 86 million would thus be in the same range as for the other Alpine base tunnels (Brenner, Gotthard, Lötschberg) [Virano 2012].

Concerning investment cost there is a debate whether Italian (high-speed) rail projects are more costly than in other countries and if yes, why this is the case. Rus and colleagues show that HSR investment per km of projects under construction in Italy in 2009 can be two to three times more costly than in other countries [Rus 2009]. Such an observation suggests that adequate procedures to monitor cost and progress of construction will be of significant importance for the implementation of the Lyon-Turin link. Involving the EC in the cost control seems an asset.

9.5. Conclusions to be drawn

Without doubt the link between Lyon and Turin constitutes a relevant part of the European TEN-T core network. Though it has been part of the TEN-T since 1994, the methodology of conception of the TEN-T developed in 2010 proved that the link should be part of the TEN-T core network as it connects two major urban nodes and two rail nodes of the core network.

However, the lack of public participation in Italy and the lack of transparency of analyses during the first 15 years of project development since 1990 have been important obstacles in progressing the project. It seems that transparency and improved participation since 2006 have led to a modified and improved project design and a phased approach to implement the infrastructure. After each phase the transport demand will be observed and only if the additional capacity provided by the next phase will be required, will the next section of the link be implemented. This seems to be a reasonable approach given the uncertainties of the transport forecast, which are also linked with uncertainties in the transport policy framework (e.g. cost on alternative routes).

The first 20 years of development of the Lyon-Turin link lacked a publicly available CBA raising permanent doubts about the benefits of the project. In 2012 the first official and public CBA was published by the Observatory revealing a positive net-present value under two out of the three analysed scenarios. However, some of the valuation parameters are questionable and the transport demand models underlying the scenarios, developed by the project promoter, are difficult to verify. Thus a scientific debate questioning the transport demand scenarios, and consequently the results of the CBA, has continued. On the other hand, the CBA applies the traditional network based approach, which ignores the potential that wider economic benefits could make a large project profitable for society.

Comments concerning the socio-economic assessment include:

- We could not identify a financial analysis for the operation phase. If it does not yet exist, we recommend that such an analysis is developed and published.
- To counteract the continuous criticism related to the transport demand scenario we recommend transport demand projections are developed by independent institutions/consultants involving experts from Switzerland. The latter is important as the Swiss modal-shift policy towards rail has generated an excellent knowledge base on the relevant issues.

To stimulate demand on the new rail link it will be important to implement the right incentives. These include:
• The design of the policy framework both in favour of the link and to reduce adverse environmental impacts of Alpine transport crossing between Mt. Blanc and Ventimiglia. Transport demand on the Lyon-Turin rail link will be strongly dependent on the developments of these competing links and modes. In particular, extensions of the motorway through the Frejus tunnel seem contradictory to the project as well as the cheap transport cost through Ventimiglia, which has resulted in a continuous road freight demand growth on this route. This policy framework should be considered in the transport demand analyses suggested above.

• The implementation of rail liberalisation measures foreseen by the EC rules such that competition can develop at both ends of the base tunnel and to create new attractive services for rail passengers and freight in France and Italy.

Better coordination between the French and the Italian sides will definitely be necessary, particularly in relation to infrastructure managers and operators of the new link. The infrastructure managers gave an excellent example of the substantial negative impact of non-cooperation. Over six years the historical line was renovated and its capacity improved by features such as new signalling technology and enlarging the tunnel profile to enable larger container wagons and larger wagons of the rolling motorway to pass through. At the end of December 2010 the works were completed. However, RFI and RFF had chosen different approaches to enlarging their national parts of the tunnel, which were not compatible such that RFI, who had the responsibility to approve the whole renovated tunnel, could not give their approval. It took another one and a half years, and the efforts of the Lyon-Turin corridor platform, to solve the issue which included some additional works [Brinkhorst 2012]. Having this in mind the stronger involvement of supra-national stakeholders as the EC and the TEN-T coordinators seems important to improve processes at cross-border sections.

Examining other cases where such large infrastructures have been built or are being built provide some lessons concerning public participation. Obviously the involvement of local stakeholders from the beginning of project development will be an asset, improving the project and making it easier and cheaper to realise. In the case of large scale projects, we would also recommend thinking about organising a public vote to decide whether the project should be implemented. The development of the Swiss base tunnels of Lötschberg and Gotthard which were decided by a vote in favour of the NEAT, provides an example to follow. Of course, such a vote would be best before the start of the works. However, there have been examples of public votes that settled a situation which had very strong opposition, similar to that in the Susa Valley. Such a vote was organised following a public mediation process which lasted several months in the case of the high-speed rail link between Stuttgart and Ulm (see the case study on S21 in this report). The support of the project by the majority of Baden-Württemberg’s citizens at the public vote quelled the protests and part of the opposition disappeared, accepting the rules of democracy. Of course, the public vote must be prepared in a fair manner, but in our opinion this seems to be a fruitful and democratic approach to deal with protests and engage the local population along the Lyon-Turin link. This presupposes that the point of no return has not yet been reached.

Despite the fact that numerous environmental analyses have been carried out, we were neither able to identify an Environmental Impact Assessment (EIA) according to the EU Directive 2011/92/EU (was before 85/337/EEC) nor a Strategic Environmental Assessment (SEA) according to EC Directive 2001/42/EC, which, given the size of the full project, would be applicable.
As transport noise in the Alpine valleys may constitute a serious problem and as we could not identify a comprehensive analysis of noise of the relevant alternatives, we would recommend that a noise study is carried out comparing at least the options of traffic in 2030 travelling (i) on road truck transport, (2) on an improved historic rail system, or (3) in the base tunnel and the other elements of NLTL (e.g. Orsiera tunnel). The results on surrounding noise levels to be expected should be presented in noise maps and publicly discussed.

9.6. References

• European Parliament (2009), Notice to Members of the Committee of Petitions, Sept. 25th 2009, CM\791817EN.doc.

• FARE (2008), FARE – Ferrovie alpine ragionevoli ed efficient. Final report to the Lyon-Turin Observatory by the Experts of the Municipalities of COMUNITA’ MONTANA BASSA VALLE DI SUSA.

• HLG (2003), *High level group on the trans-European transport network*. High level group chaired by Karel van Miert reporting to the European Commission, Brussels.

• No TAV valleys (2011), New Lyon-Turin railway line (TEN-T Priority Project No 6). Letter to European Commissioner Sim Kallas.

• Observatory (2007), Scenari di traffico Arco alpino. Quaderno No. 2 published by the Osservatorio cololegamento ferroviario Torino-Lione.

• Observatory (2012), Analisi Costi-Benefici: Analisi globale e ricadute sul territorio. Quaderno No. 8 published by the Osservatorio cololegamento ferroviario Torino-Lione.

• Sangone (2007), Appeal to the European Parliament members against the waste of 1 thousand million Euros; for the defence of both Nature and health related to hundreds of thousands of people. Letter of the Sangone Valleys No TAV Coordination Committees sent to Members of the European Parliament.

• Ulgiati S., Cicconi I., Mercalli L., Ponti M. (2012), *An appeal to re-consider the decision about the Turin – Lyon high speed railway, TEN-T Nº6 priority project, on the basis of economic, social and environmental evidence*. Letter sent to President Mario Monti.

• Virano M. (2012), *Turin-Lyon: Re-establishing the relations with the Susa Valley*. Presentation at the Netlife Network Meeting in Warsaw.
ANNEX 10. GOTTHARD BASE TUNNEL

Table C10-1: Project summary Gotthard Base Tunnel

<table>
<thead>
<tr>
<th>Aspect</th>
<th>Description</th>
<th>Aspect</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Title</td>
<td>NEAT: “Neue Eisenbahn-Alpen-Transversale” (Section Gotthard Base Tunnel)</td>
<td>TEN-T code</td>
<td>-</td>
</tr>
<tr>
<td>Countries / area</td>
<td>Switzerland</td>
<td>Start date</td>
<td>1996. Construction started in 1999</td>
</tr>
<tr>
<td>Mode(s)</td>
<td>Rail with tunnel sections</td>
<td>End date</td>
<td>Dec. 2016 (expected)</td>
</tr>
<tr>
<td>Managing authority</td>
<td>AlpTransit Gotthard Ltd. Will hand over the tunnel to the Swiss Federal Railway (SBB)</td>
<td>Duration</td>
<td>20 years</td>
</tr>
<tr>
<td>Included in TEN-T</td>
<td>The project “Rail Freight Corridor 1” is part of the Rhine-Alpine Corridor (named since 01/01/2014). It was formerly named “Corridor Rotterdam-Genoa”</td>
<td>TEN-T element</td>
<td></td>
</tr>
<tr>
<td>Investment cost</td>
<td>CHF 9 800 million from the year 1998</td>
<td>Length (km)</td>
<td>57 km</td>
</tr>
<tr>
<td>EC funding TEN-T (m€)</td>
<td>none</td>
<td>EC share</td>
<td>none</td>
</tr>
<tr>
<td>Funding 1</td>
<td>-</td>
<td>Value (m€)</td>
<td>-</td>
</tr>
<tr>
<td>Cost-benefit analysis</td>
<td>2010 (latest). At least two previous studies are available: one from 1997 (WIRE 1997), and from 1988 (Infras). There were updates in 1994 and 2002.</td>
<td>CBA ratio</td>
<td>~ 1</td>
</tr>
<tr>
<td>Public y/n</td>
<td></td>
<td></td>
<td>(y)</td>
</tr>
<tr>
<td>Transport scenario</td>
<td>No NEAT, Lötschberg and/or Gotthard tunnels. 4 m height increase in tunnels.</td>
<td>Dated from</td>
<td>2010 (latest)</td>
</tr>
<tr>
<td>Externality covered</td>
<td>Weather, emissions, noise exposure, and accidents</td>
<td>Ext. cost (mCHF)</td>
<td>141 (NEAT project)</td>
</tr>
<tr>
<td>EIA</td>
<td>NIBA: Nachhaltigkeitsindikatoren Bahn (sustainability indicators for trains)</td>
<td>Public y/n</td>
<td></td>
</tr>
<tr>
<td>CIA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Financial analysis</td>
<td></td>
<td>Payback</td>
<td></td>
</tr>
<tr>
<td>Ex-post evaluation</td>
<td>Continuous monitoring and evaluation (NEAT Standberichte)</td>
<td>Cost overrun (mCHF)</td>
<td>3 451 (55%)</td>
</tr>
</tbody>
</table>

Source: own analysis.
The NEAT “Neue Eisenbahn-Alpen-Transversale” in German, or in French the NLFA (“La Nouvelle ligne ferroviaire à travers les Alpes”) is composed of different railway tunnels (mainly Lötschberg and Gotthard) whose final objective is to increase the total transport capacity across the Alps particularly for freight, with special attention to the link between Germany and Italy.

Figure C10-1: Corridor Rhine Alpine

This project is part of the Rhine-Alpine Corridor (named since 01/01/2014) which was formerly named “Corridor Rotterdam-Genoa”. It also belongs to the project “Rail Freight Corridor 1“.

Its final goal is to shift freight from road to rail to reduce environmental impacts. Nonetheless, it would also benefit passengers by diminishing train travel time. It is expected that a train from Zurich to Milan will take about 3 hours, and from Zurich to Lugano around one hour and 50 minutes (with both the Gotthard and Ceneri base tunnels being operational). The St. Gotthard base tunnel is the world’s largest rail tunnel (Office fédéral des transports OFT, online; Wikipedia, online). According to the NETLIPSE evaluation (Hertogh et al., 2008), the St. Gotthard base Tunnel has achieved the highest score in their risk management analysis and is considered to have implemented the best practices for risk management.

The official webpage of the Swiss Federal Office of Transport (OFT, online) states that in 1992 Swiss citizens approved the first draft project of the new rail link through the Alps, NRLA (La nouvelle ligne ferroviaire à travers les Alpes, NLFA in French) and on 29th November 1998, they approved the revised project. This project is also part of the agreement regarding land transport between Switzerland and the EU.

The project was carried out in two different stages as presented in Figure C10-2. One of these was related to the Loetschberg-Simplon axis planning, and the other to the Base tunnel of St. Gotthard (with the Ceneri base tunnel south of it). The Loetschberg Simplon axis with the Loetschberg base tunnel began operating on 9th December, 2007.

The St. Gotthard base tunnel is 57 km long and construction works started at the end of 1999. Both construction fronts were finally connected in March 2011 (first tube in October 2010).
According to the NETLIPSE book (Hertogh et al., 2008 p.50), planning took 7 years. Construction is taking around 18 years and therefore the total delivery will be about 25 years. Nowadays civil works are concentrated on the equipment of the rail systems. The third part is related to the Ceneri base Tunnel which should be connected in 2015 and operational in 2019. According to the progress report of 31st December 2006 it was expected that the Gotthard Base tunnel could be in operation in 2017, whereas previous reports had published earlier dates of completion (Hertogh et al., 2008 p.51).

There were some delays, for instance resulting from the complaints of the Uri canton, which were underestimated and resulted in delays and extra costs. Problems related to the tunnelling process also deferred the works.

It is notable that the planning process of the project, which is recognised as an important part of the project, assures its success. It is based on the “Sectoral Plan AlpTransit”, first published in 1995. Federal, cantonal and local authorities discussed and integrated their spatial planning activities. It is a binding document for all levels of policy-making and has to be taken into account for future planning. Any overlap with new programs need to be highlighted and discussed with the Division for Infrastructure of the Federal Office for Transport (FOT) and all parties concerned have to work together on a solution. Furthermore, it can be updated, adapted and reviewed as necessary (Hertogh et al., 2008). This key step might be seen as a very simple one, but it is indeed one of the recipes for success in infrastructure development, and not easily achievable as discussed elsewhere (Mejia-Dorantes & Lucas, 2013). The Division for Infrastructure of FOT specifically assigned communication responsibilities at the beginning of the project (Hertogh et al., 2008 p. 91).

As a result, the progress of civil works have been discussed by a specific unit (the division for Infrastructure of the FOT), and topics related to finance have had to be discussed by another responsible unit. The project’s success has been based on the cooperation between all the people involved.

A special parliamentary delegation also carried out political supervision. This delegation is known as NAD, the “Delegation for the Supervision of the NEAT”, which is the highest supervisory authority for the planning and construction of the “New Railway Lines under the Alps”. It assures the continuity of the project over new governments or different authorities (Hertogh et al., 2008).
10.1. **Methodology and comments on the CBA and project selection**

The Parliament has committed itself to periodically inform the public about the economic status of the project. As a result, many public and private studies have been prepared. See for example the Economic Analyses from 2010 and 1997 (Wirtschaftlichkeitsstudie NEAT), (Ecoplan, 1997; Ecoplan and Infras, 2011; Infras, 2012); or the periodic status reports on the New Railway Link through the Alps from different years (Neue Eisenbahn-Alpentransversale Standbericht 2007/I, 2008/I, 2008/II) available online in OFT (online b).

The economic analyses make use of the NIBA-methodology (Bruns, Erismann, 2006), with a time period of 60 years and an interest rate of 2%. The net benefits of the total NEAT infrastructure was calculated as being approximately CHF 526 million per year from 2008-2070, leaving a net gap between socio-economic benefits and cost that can be monetised of CHF 31 million per year (Ecoplan and Infras, 2011). The authors acknowledge that further benefits exist that could not be monetized.

The Ecoplan/Infras (2011) analyses evaluate the total costs of the railway system without the NEAT, assuming the opening of Lötschberg and the opening of Gotthard over the long term for the transport of people and goods, as shown in Figure C10-3 and Figure C10-4.

Figure C10-3: Forecast of increase in millions of trips per year

[Graph showing the forecast of increase in millions of trips per year with various projections for different scenarios including the opening of Lötschberg and Gotthard.]

The economic analysis took into account the following aspects:

- **Environmental**
 - Emissions of air pollutants
 - Noise exposure
 - Weather

- **Economic:**
 - Infrastructure: operation, maintenance, energy, reinvestment
 - Transport of people: rail operation, revenues from tickets, and from time savings
 - Transport of goods: productivity savings from rail.

- **Society**
 - Accidents

The most recent analysis of cost and benefits of the NEAT reveals that substantial benefits accrue outside Switzerland i.e. to the European Union. The Swiss analysis concludes that the EU experiences benefits through NEAT that are three times higher than their cost. This is an interesting estimate of European added value of a mega project (Ecoplan/Infras 2011).

10.2. Methodology and comments on the environmental analysis

The NIBA (*Nachhaltigkeitsindikatoren für Bahninfrastrukturprojekte* in German) evaluation method was applied at federal level and then compared with the macroeconomic analysis. As previously stated, the environmental analysis takes into account emissions of air pollutants, noise exposure, and weather.

Nowadays the project is described as the “largest environmental protection project in Switzerland” in order to generate a positive perception from citizens, although it was previously portrayed differently (Hertogh et al., 2008 p. 80).
10.3. **Characteristics of the transport demand scenario and its economic drivers**

Many studies have been performed and according to the latest economic assessment (Ecoplan & Infras, 2011), at least two previous studies are available: one from 1997 (WIRE 1997), and another from 1988 (Infras). There were also updates in 1994 and 2002.

The first NEAT profitability study was carried out by Infras in 1988. Six years later, Coopers & Lybrand updated the accounts of the previous business model study. In 1997 Ecoplan presented a new business model with new transport analysis and costs, which was updated in 2002. All these studies concluded that the project was not profitable.

The study in 2010 by Ecoplan & Infras (2011) describes different scenarios: from having no NEAT to building different tunnels, such as the Brenner and Mont Cenis-base tunnel by 2030, or by considering a strategic coordination of projects. The authors also point out that demand on the Gotthard rail axis can be substantially reduced by increasing the capacity of competing road infrastructure e.g. by adding a second bore to the Gotthard road tunnel.

10.4. **Investment cost and structure of financing**

At the end of 2013, the OFT, “Office Fédéral des Transports”, estimated that the costs would total CHF 18.5 billion at 1998 prices, which is equivalent to EUR 15.3 billion (AlpTransit, 2014). Approximately CHF 12.4 billion (EUR 10.6 billion) of this represents funds for the St. Gotthard axis (which also includes Ceneri) and the Saint Gotthard base tunnel represents approximately CHF 10 billion (EUR 8.2 billion) (Office Fédéral des Transports OFT. Confédération Suisse, 2011).

Both the Gotthard and Lötschberg Base tunnels were subjected to long discussions regarding project viability (Hertogh et al., 2008). From 1992 to 1995 two ministers discussed the projects, and a financing solution was found through a special fund, called the FinöV-Fund, for the construction and financing of designated projects. See Figure C10-5 for more information on the financial resources and their application. The FinöV-Fund receives contributions from three different resources: the heavy goods vehicle charge (LSVA), fuel taxes, and a per mill of the value-added tax (AlpTransit, 2014) (Herto gh et al., 2008 p.84).

The Ecoplan & Infras study (2011 p.9) indicates that the transport of people will be benefitted by the NEAT project, giving positive revenues of about CHF 87 million /year. On the other hand, in the case of transport of goods, they assume a complete liberalisation and competition of rail logistics such that the transport of goods would give balanced results. Finally, taking into account the profits from the infrastructure of transport of people and goods along with the generated costs, the result would lead to a profit of CHF 96 million per year, even if this amount decreases to CHF 87 million per year due to replacement costs approximately 20 years later.

Ecoplan and Infras state that the NEAT is in fact a measure which is very profitable for the neighbouring territories, with benefits equal to three times the cost. Despite this situation, Switzerland continues to tackle the transport problem and contributes to improving transportation across the Alps in a sustainable way.
A recent study carried out by INFRAS (2012) assesses the impact on the volume of traffic of the NRLA and a 4 metre corridor on the Gotthard axis. The Gotthard and Ceneri base tunnels have reduced the distance of the route through Switzerland by 30 km (decreasing the Basel-Chiasso/Luino route by 10%), which results in savings in travel time of 60 minutes (17%), decreased operating costs of the railway of around 30%, and 35% decreased personnel costs, with reduced energy costs of around 10%. In total, via Gotthard and taking into account an unaccompanied combined transport (UCT) (containerised transport of goods), costs are said to be reduced by 9%, and an improved quality would reduce costs by between 10% and 20%. Furthermore, the study estimates that the opening of the Gotthard base tunnel will increase the number of transalpine UCT by 59% from current levels and by 98% by 2030. Alternatively, in the hypothetical situation without the NRLA, 2030 transport volumes would increase by 12% and 40% with the 4 m corridor; the expansion of a 4 m profile height of the Gotthard axis is a measure to control the expected outcomes, like transporting trailer traffic and allowing the transport of tall heavy goods vehicles on the Rolling Highway. Heavy truck traffic will still increase even with the NRLA and the 4 m corridor.

10.5. Cost developments over the life-cycle of the project

For transparency purposes, the NEAT projects introduced an index, which relates price increases to cost types relevant to tunnel construction projects. They also included 15% of the budget for contingencies (Hertogh et al., 2008 pp. 87-88). Figure C10-6 shows the development of this index.
Figure C10-6: NEAT price increase index per year

The NLFA global credit of CHF 19.1 billion (EUR 15.6 billion) was officially accepted by the Federal decree of 16th September 2008. This includes the investments in the following different tunnels: St-Gotthard base, Ceneri and Loetschberg, the development of the Surselva, developments over the rest of the resources from the Loetschberg and the St.Gotthard, plus urgent developments in Arth-Goldau and the surveillance of the project (AlpTransit, 2014).

The cost of the Gotthard base tunnel increased by about 55% compared to the initial cost estimate of CHF 6,323 million. Figure C10-7 shows the different reasons for cost increases. Environmental mitigation and project additions together with political delays account for about 15% of the cost increase. Geological issues, which could be classified as a risk of tunnel boring projects, account for another 16%. The remaining two thirds of the cost increases (security, engineering, construction issues) could be classified as planning deficiencies, although a more detailed analysis is necessary to determine the actual reason for the cost increase in these categories.

Source: NEAT Offices (last update 2013).
Figure C10-7: Budget modifications (Gotthard without Ceneri)

- Original cost basis (CHF 6 323 million)
- Security and engineering development (CHF 1 312 million)
- Improvements for population and the environment (CHF 199 million)
- Delays due to political reasons (CHF 281 million)
- Geology (CHF 544 million)
- Construction issues (CHF 1 076 million)
- Project Additions (CHF 38 million)

*Prices are with respect to 1998. Updated information as of December 31st 2013

10.6. Conclusions to be drawn

- The NEAT was subject to a strong debate for many years, which improved its understanding and usefulness. One of the issues that arose after these debates was the funding mechanisms necessary to push the project ahead.
- A new financing method was developed to assure the financial feasibility of the project; the FinöV fund is an important funding innovation for the whole NEAT. It places a substantial burden on road transport through taxation over 20 years, which is sufficient for the construction of the project.
- The project scope of Gotthard was reduced in order to assure its feasibility. The whole NEAT comes at a cost-benefit ratio of about 1, considering quantifiable benefits only.
- Potential extensions of competing road infrastructures would reduce the benefits of the Gotthard base tunnel.
- The organisation and supervision of the project is exemplary.
- Project costs will increase by more than 50% of the original cost base.
- As mentioned by the NETLIPSE book (Hertogh et al., 2008 p.92) the 3-V model resulted in strong cooperation between different spatial levels of authority.
- A significant proportion of the benefits of NEAT accrue as added value to the EU.
10.7. References

- Corridor Rhine Alpine Corridor Information (online) http://www.corridor-rhine-alpine.eu/

- Ecoplan (1997), Wirtschaftlichkeitsstudie NEAT. Ergebnisse im Überblick. Switzerland.

ANNEX 11. LÖTSCHBERG-SIMPLON TUNNEL

Table C11-1: Project summary Lötschberg Base Tunnel

<table>
<thead>
<tr>
<th>Aspect</th>
<th>Description</th>
<th>Aspect</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Title</td>
<td>NEAT: "Neue Eisenbahn-Alpen-Transversale" (Section Lötschberg Tunnel)</td>
<td>TEN-T code</td>
<td>-</td>
</tr>
<tr>
<td>Countries / area</td>
<td>Switzerland</td>
<td>Start date</td>
<td>1994, 1999 base tunnel</td>
</tr>
<tr>
<td>Mode(s)</td>
<td>Rail with tunnel sections</td>
<td>End date</td>
<td>Dec. 2007</td>
</tr>
<tr>
<td>Managing authority</td>
<td>BLS AlpTransit SA</td>
<td>Duration</td>
<td>13 years</td>
</tr>
<tr>
<td>Included in TEN-T</td>
<td>The project "Rail Freight Corridor 1" is part of the Rhine-Alpine Corridor (named since 01/01/2014). It was formerly named "Corridor Rotterdam-Genoa"</td>
<td>Delay (mth)</td>
<td>11</td>
</tr>
<tr>
<td>Investment cost</td>
<td>CHF 5.31 billion (~EUR 4,200 million)</td>
<td>Length (km)</td>
<td>34.6 (Lötschberg)</td>
</tr>
<tr>
<td>EC funding TEN-T (mC)</td>
<td>None</td>
<td>EC share</td>
<td>None</td>
</tr>
<tr>
<td>Funding 1</td>
<td>Swiss Government, partly to be paid back</td>
<td>Value (mC)</td>
<td>-</td>
</tr>
<tr>
<td>Cost-benefit fit-analysis</td>
<td>2010 (latest). At least two previous studies are available: from 1997 (WIRE 1997), and from 1988 (Infras). There were also updates in 1994 and 2002.</td>
<td>CBA ratio</td>
<td>~1 (NEAT)</td>
</tr>
<tr>
<td>Public y/n</td>
<td>y</td>
<td>Transport scenario</td>
<td>2010 (latest)</td>
</tr>
<tr>
<td>Externality covered</td>
<td>Weather, emissions, noise exposure, and accidents</td>
<td>Dated from</td>
<td>2010 (latest)</td>
</tr>
<tr>
<td>EIA</td>
<td>NIBA: Nachhaltigkeitsindikatoren Bahn (sustainability indicators for rail)</td>
<td>Ext. cost (mCHF)</td>
<td>141 (NEAT)</td>
</tr>
<tr>
<td>CIA</td>
<td></td>
<td>Public y/n</td>
<td>-</td>
</tr>
<tr>
<td>Financial analysis</td>
<td></td>
<td>Payback / EIRR</td>
<td></td>
</tr>
<tr>
<td>Ex-post evaluation</td>
<td>Under preparation in 2008 (not available) (according to EVA-TREN project)</td>
<td>FIRR / SDR</td>
<td></td>
</tr>
<tr>
<td>Cost overrun (mC)</td>
<td></td>
<td>Source: own analysis.</td>
<td></td>
</tr>
<tr>
<td>Delay (mth)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Public y/n</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cost overrun (mC)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source: own analysis.
The NEAT “Neue Eisenbahn-Alpen-Transversale” in German, or in French the NLFA (“La Nouvelle ligne ferroviaire à travers les Alpes”) is composed of different railway tunnels (mainly Lötschberg and Gotthard) whose final objective is to increase the total transport capacity across the Alps particularly for freight, with special attention given to the link between Germany and Italy.

This project is part of the Rhine-Alpine Corridor (named since 01/01/2014) which was formerly called the “Corridor Rotterdam-Genoa”. It also belongs to the “Rail Freight Corridor 1” project.

Its final goal is to shift freight from road to rail to reduce environmental impacts. It would also benefit passengers as it would reduce train travel times.

When we refer to the Lötschberg-Simplon tunnel, we actually mean the rail tunnel that passes through the Alps connecting the town of Brigue in Valais (Switzerland) to the Iselle (Piedmont) in Italy. It has a length of 19.823 km and it was inaugurated in 1906. Until 1982 it was the longest tunnel in the world.

The Lötschberg base tunnel however, is a tunnel that connects Frutigen (Berne Canton) with Rarogne (Valais Canton) in Switzerland. It is part of the NLFA or NEAT. It is 34.6 km long with two galleries.

BLS (online) states that the Lötschberg base tunnel was designed with twin single-track tubes to ensure optimum reliability, but for financial reasons, only one of the tubes was fully equipped, while the second one was left largely as a shell. Moreover, all systems are duplicated in the tunnel which means that operations can continue in the event of any technical problems. According to other sources, (EVATREN, 2008), the feasibility studies conducted stated that two tunnels (i.e. Gotthard and Lötschberg base tunnels) would not be profitable even with a long concession period. Due to the political and social situation it would not have been possible to carry on with the project with only one tunnel.
According to the BLS (online) this tunnel currently carries 50 passenger trains and up to 60 freight trains per day which means that the tunnel’s capacity averages over 80% and on some days even reaches 100%. This requires highly qualified traffic management.

The official webpage of the Swiss Federal Office of Transport (FOT, online) states that in 1992 Swiss citizens approved the first draft project of the new rail link through the Alps, the NRLA (La nouvelle ligne ferroviaire à travers les Alpes, in French) with 63.5% votes in favour. According to other sources there was a previous referendum on Rail 2000 in 1987, in which 57% voted in favour (BLS, online). On 29th November 1998, the citizens approved the revised project. This project is also part of the agreement regarding land transport between Switzerland and the EU.

The project was modified during project development. This was primarily to reduce the investment cost. Instead of building the Loetschberg base tunnel from the beginning with two fully equipped tubes, a phased approach was chosen. This meant dividing the project into implementation phases and only starting the next phase of implementation if demand is growing and is expected to continue to grow such that a cost-benefit analysis of the next implementation phase would become positive. For the first phase it was decided to fully build and equip just one tube. Only about three quarters of the second tube was dug during the first phase and less than half of the second tube is fully equipped and operational for rail transport. Thus, when the Loetschberg-Simplon axis with the Loetschberg base tunnel began operations on 9th December 2007, more than half of the base tunnel functioned with a single track reducing the capacity of the base tunnel (BLS 2005, NLFA 2014).

It is notable that the planning process of the project, which is recognised as an important part of the project, assures its success. It is based on the “Sectoral Plan AlpTransit”, first published in 1995. Federal, cantonal and local authorities discussed and integrated their spatial planning activities. It is a binding document for all levels and has to be taken into account for future planning. Any overlap with new programs need to be identified and discussed with the Division for Infrastructure of the Federal Office for Transport (FOT) and all parties concerned have to work together on a solution. Furthermore, it can be updated, adapted and reviewed as necessary (Hertogh et al., 2008). The FOT has specifically assigned communication responsibilities since the beginning of the project (Hertogh et al., 2008 p. 91). The progress of civil works was discussed by a specific unit (the division for Infrastructure of the FOT) and finance had to be discussed by another unit responsible for this topic. Nevertheless, the success of the project was based on the cooperation between all the people involved in the project.

A special parliamentary delegation also carried out political supervision. This delegation is known as NAD, the “Delegation for the Supervision of the NEAT”, which is the highest supervisory authority for the planning and construction of the “New Railway Lines under the Alps”. It assures the continuity of the project over new governments or different authorities (Hertogh et al., 2008).

Many sources such as BLR (online) describe some of the funding strategies developed for this project. For example, the special fund, which largely contributes to financing the NEAT through the heavy goods vehicle charge, along with revenues from mineral oil taxes.
11.1. Methodology and comments on the CBA and project selection

The Swiss Parliament has committed itself to periodically inform the public about the economic status of the project. As a result, many studies have been commissioned, and many of them published. See for example the economic analyses from 1997 and 2011 (Ecoplan, 1997; Ecoplan & Infras, 2011); or the periodic status reports from the New Railway Link through the Alps from different years (Federal Office of Transports, online). Interestingly, the purely economic analyses of 1997, i.e. excluding external cost, concluded that all NEAT options would lead to negative economic results. Investment cost would never be recovered, apart from an investment scenario that only implemented the Lötschberg, i.e. excluding the Gotthard tunnel and the full NEAT concept. Such a scenario would, in addition, be accompanied by a high or very high growth of freight transport (Ecoplan 1997). This economic analysis was updated in 2002 concluding that under favourable conditions about 25% of the investment made in the NEAT could be paid back by users of the infrastructure (Ecoplan 2002).

Their recent analyses make use of the NIBA-methodology (Bruns, Erismann, 2006), with a time period of 60 years and an interest rate of 2%. The benefits of the total NEAT infrastructure were calculated as about CHF 526 million per year from 2008-2070 (Ecoplan & Infras, 2011).

The authors evaluate the total costs of the railway system for the following different scenarios, for the transport of people and goods over the long-term: without the NEAT, with the Lötschberg opening and with the Gotthard opening (Figure C11-1 and Figure C10-4).

Figure C11-1: Transport demand for the NEAT in the long-term scenarios (in millions of trips per year) with the opening of Lötschberg and Gotthard /without NEAT

![Graph showing transport demand](Image)
The socio-economic analysis took into account the following aspects:

- Environmental
 - Emissions of air pollutants
 - Noise exposure
 - Weather
- Economic:
 - Infrastructure: operation, maintenance, energy, reinvestment
 - Transport of people: rail operation, revenues from tickets, and from time savings
 - Transport of goods: productivity savings from rail.
- Society
 - Accidents

11.2. Methodology and comments on the environmental analysis

The NIBA (Nachhaltigkeitsindikatoren für Bahninfrastrukturprojekte) evaluation method was applied at federal level and then compared with the macroeconomic analysis.

Nowadays, the project is described as the "largest environmental protection project in Switzerland" in order to generate a positive perception from the citizens, although it was previously portrayed differently (Hertogh et al., 2008 p. 80).

11.3. Characteristics of the transport demand scenario and its economic drivers

Many studies have been performed with the most recent one being in 2010. At least two previous studies are available: one from 1997 (WIRE 1997), and another from 1988 (Infras). There were also updates in 1994 and 2002.

The first NEAT profitability study was carried out by Infras in 1988. Six years later, Coopers & Lybrand updated the accounts of the previous business model. In 1997 Ecoplan presented a new business model with new transport analysis and costs, which was updated in 2002. All these studies concluded that the whole NEAT project would not be profitable.

The study in 2010 by Ecoplan & Infras (2011) describes different transport scenarios: from having no NEAT to building different tunnels. It also discusses the potential impact of parallel improvements of road infrastructure. The latter would reduce the benefits of the NEAT tunnels.

The maximum capacity of the Lötschberg-Simplon axis is 110 freight trains per day. Considering capacity limiting factors (e.g. maintenance) the weekly capacity would be above 600 freight trains. As Figure C11-2 reveals, about two thirds of the capacity is used on average, with a maximum of approximately 500 freight trains per week. During a blockade of the Gotthard rail line, up to 105 freight trains could actually be served on the Lötschberg-Simplon axis (EBP 2012).
11.4. Investment cost and structure of financing

At the end of 2013, the OFT, “Office Fédéral des Transports”, estimated that the costs would total CHF 18.5 billion at 1998 prices, which is equivalent to EUR 15.3 billion (AlpTransit, 2014). Approximately CHF 12.4 billion (EUR 10.6 billion) represents funds for the St. Gotthard axis (which also includes Ceneri). Numbers differ depending on sources but the NETLIPSE study (Hertogh et al., 2008) reports a budget of EUR 2,676 million for 2006 at a price base of 1998 for the Lötschberg base tunnel.

Both the Gotthard and Lötschberg base tunnels were subjected to longer discussion regarding project viability (Hertogh et al., 2008). From 1992 to 1995 two ministers discussed the projects, and a financing solution arose through a special fund, called the FinöV-Fund, for the construction and financing of designated projects. The FinöV-Fund nurtured by three different resources: The heavy goods vehicle charge, fuel taxes, and a per mill of the value-added tax (AlpTransit, 2014; Hertogh et al., 2008 p.84).

The Ecoplan & Infras study (2011 p.9) indicates that the transport of people will be benefited by the NEAT project, giving positive revenues of about CHF 87 million per year. On the other hand, in the case of the transport of goods, they assume a complete liberalisation and competition of rail logistics. Even if these facts question the results, the authors consider that the transport of goods would give balanced results. Finally, taking into account the profits from the infrastructure of transport of people and goods along with the generated costs, the result would lead to a profit of CHF 96 million per year, and approximately 20 years later this amount would decrease to CHF87 million per year due to replacement costs.

Ecoplan and Infras (2011) conclude that the NEAT is in fact a measure which is very profitable for the neighbouring territories, with benefits equal to three times the cost. Despite this situation, Switzerland continues to tackle the transport problem and contributes to improving transportation across the Alps in a sustainable way.
11.5. Cost developments over the life-cycle of the project

In 1997 investment costs of the Lötschberg base tunnel were estimated at about CHF 3,200 in values of 1993 (Ecoplan 1997). The final cost was calculated at CHF 4,250 million in 1998 values and at CHF 5,310 million in current values (2009) (BAV 2009). Considering that inflation in Switzerland was 4.1% between 1993 and 1998 the cost increase of the Lötschberg base tunnel was about 27%.

For transparency purposes, the NEAT projects introduced an index, which relates price increase to cost types relevant to tunnel construction projects. Its development is shown in Figure C11-4. They also included 15% of the budget for contingencies (Hertogh et al., 2008 pp. 87-88).

The NLFA global credit of CHF 19.1 billion (EUR 15.6 billion) was officially accepted by the Federal decree of 16th September 2008 which includes the investments in different tunnels: St-Gotthard base, Ceneri and Loetschberg, the development of the Surselva, developments over the rest of the resources from the Loetschberg and the St.Gotthard, plus urgent developments in Arth-Goldau and the surveillance of the project (AlpTransit, 2014).
11.6. Conclusions to be drawn

- This project is understood as a necessary modernisation step, shifting the transport of passengers and goods from the road to rail.
- Swiss policy-makers consider there to be three important requirements for a successful traffic transfer policy: the new rail through the Alps, the mileage-related heavy vehicle charge and the opening of the markets through the rail reform.
- It was planned to maintain the NEAT as a group of complex infrastructures instead of three independent infrastructures. Therefore, its completion, problems, profitability and other outcomes are interrelated.
- It was necessary to continue the Lötschberg axis with the rest of the projects: Gotthard and Ceneri.
- It is worth highlighting the efforts made to ensure proper coordination between different levels of authorities in order to maintain the continuity of the project without politically based changes.
- The fact that this project was largely discussed and later voted on in a plebiscite, eases the confrontation and problems that often arise with mega projects.
- Even if the project has incurred substantial cost overruns (+27%), a periodic and transparent publication of the state of the art of the project has improved its image in the long term.
11.7. References

- BLS (online) http://bls.ch/e/infrastruktur/neat.php

- Corridor Rhine Alpine (online), *Corridor Information.* http://www.corridor-rhine-alpine.eu/

ANNEX 12. SEINE-SCHELDT CANAL PROJECT

Table C12-1: Project summary Seine-Scheldt waterway

<table>
<thead>
<tr>
<th>Aspect</th>
<th>Description</th>
<th>Aspect</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Title</td>
<td>The Seine-Scheldt inland waterway network-cross-border section between Compiègne and Ghent</td>
<td>TEN-T code</td>
<td>2007-EU 30010-P</td>
</tr>
<tr>
<td>Countries / area</td>
<td>France, Belgium</td>
<td>Start date</td>
<td>January 2007 (Planning)</td>
</tr>
<tr>
<td>Mode(s)</td>
<td>Water</td>
<td>End date</td>
<td>January 2014</td>
</tr>
<tr>
<td>Managing authority</td>
<td>VNF for France</td>
<td>Duration</td>
<td>7 years</td>
</tr>
<tr>
<td>Included in TEN-T</td>
<td>Priority project 30 in 2004</td>
<td>Delay (mth)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TEN-T element</td>
<td>Core network, Corridor North Sea-Mediterranean</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Length (km)</td>
<td>160 km</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EC funding TEN-T (m€)</td>
<td>420 for 2007-2013 is expected to be updated</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EC share</td>
<td>max 40%</td>
</tr>
<tr>
<td>Funding 1</td>
<td>France state budget</td>
<td>Value (m€)</td>
<td>Not decided</td>
</tr>
<tr>
<td>Funding 2</td>
<td>EU TEN-T co-finance</td>
<td>Value (m€)</td>
<td>Not decided</td>
</tr>
<tr>
<td>Funding 3</td>
<td>PPP partnerships withdrawn</td>
<td>Value (m€)</td>
<td>0</td>
</tr>
</tbody>
</table>

French Sector

<p>| | | Public y/n | Y |
| Transport scenario | VNF (2006a). In the context of CBA Revised 2013 after reconfiguration of the project | Dated from | Dec. 2006 |
| Externality covered | VNF (2006a) ; extended by CE Delft et al. (2010) | Ext. cost (m€) | No aggregate figures reported CE study for intermodal comparison per km |</p>
<table>
<thead>
<tr>
<th>EIA</th>
<th>VNF (2006a)</th>
<th>Public y/n</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIA</td>
<td>Covered by VNF (2006b)</td>
<td>Public y/n</td>
<td>Y</td>
</tr>
<tr>
<td>Financial analysis</td>
<td>n.r.</td>
<td>Payback / EIRR</td>
<td>n.r.</td>
</tr>
<tr>
<td>FIRR / SDR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ex-post evaluation</td>
<td>Project not started</td>
<td>Cost overrun (mC)</td>
<td>n.a.</td>
</tr>
</tbody>
</table>

Belgian (Flemish) Sector

| **Cost-benefit-analysis** | Belconsulting (2005): Maatschappelijke kosten-batenanalyse. Technische & Economische Analyse. | **CBA ratio** | Alternative 1: 0.73
Alternative 2: 0.90
Alternative 3: 1.45
Alternative 4: 0.77 |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Public y/n</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Externalities covered</td>
<td>External effects: emissions, noise, congestion and social aspects (safety)</td>
<td>Ext. cost (mC)</td>
<td></td>
</tr>
<tr>
<td>EIA</td>
<td>Belconsulting (2005): Actualisatie economische studie: milieuimpactanalyse. Within this study the following impact aspects have been analysed: Water; Soil; Sound; Air; Human life; Fauna & Flora.</td>
<td>Public y/n</td>
<td>Y</td>
</tr>
<tr>
<td>CIA</td>
<td>None</td>
<td>Public y/n</td>
<td></td>
</tr>
<tr>
<td>Financial analysis</td>
<td>Not available</td>
<td>Expected RoI</td>
<td></td>
</tr>
<tr>
<td>Ex-post evaluation</td>
<td>d.n.a.</td>
<td>Cost overrun (mC)</td>
<td>n.a.</td>
</tr>
</tbody>
</table>

Source: VNF and own analysis.
The summary relates to the data configuration 12/2013 (see section 12.6). For the data configuration 12/2012 see first study.
The Seine-Nord Scheldt project is part of Priority Project 30 Inland Waterway Seine-Scheldt and is designed to connect the Seine and Scheldt river basins, and, to a broader extent, the entire Rhine-Scheldt delta and the Rhine basin (Priority Project 18 - Waterway axis Rhine/Meuse-Main-Danube). It will not only help to alleviate serious road congestion which affects the north-south economic axis, but will also open up a new European freight corridor between Le Havre, Paris, Dunkerque, Antwerp, Liège and Rotterdam/Amsterdam.

The project will concentrate freight in push-tows carrying up to 4,400 tonnes along the corridor. At the same time it will provide high-capacity access to the northern seaports and a catchment market of more than 60 million people.

Figure C12-1: Location of the Seine-Scheldt waterway network

The project investments will be aimed at eliminating the main bottlenecks, concentrating on the following three sections:

- Seine-Ghent
- Condé-Pommeroeul to Sambre
- Upper Scheldt

The objectives of PP 30 will be achieved by upgrading, recalibrating and developing the broad-gauge waterways of the Seine and Scheldt basins:

- In France: The Seine and the Tancarville Canal (Montereau-Gennevilliers-Rouen-Le Havre) with Port 2000 Lock; the downstream section of the Oise between Conflans-Sainte-Honorine and Janville; the Nord - Pas-de-Calais network which includes the Dunkerque - Scheldt Canal connecting Dunkerque to Valenciennes with three sections to Belgium via the Deûle and the Lys, via the Scheldt and via Condé-Pommeroeul Canal; the future broad gauge canal between the Oise and Nord - Pas-de-Calais, the Seine - Nord Canal with, in particular, the creation of four multimodal platforms located along the 106 km of the future Seine-Nord Europe Canal and the development of innovative transport solutions.

- In Belgium: The Lys, the diversion of the Lys, the Ghent - Bruges Canal, the Ghent circular Canal, and beyond the sea canal between Ghent and Terneuzen, the Ghent Canal to Bruges and Ostend; the upper-Scheldt between Mortage and Ghent, the Condé-Pommeroeul Canal, the corridor through Wallonia from Pommeroeul to the Sambre including the Nimy-Blaton Canal, the Centre Canal, the Charleroi - Brussels Canal and the Sambre.

The French, Flemish and Walloon governments, co-operating in this project, have created a European Economic Interest Grouping (EEIG) as the implementing body. Within the limited time available we were able to establish contact with Voie Navigables de France (VNF), the French implementing body, and Waterwegen en Zeekanal NV, the Flemisch implementation body, but not the Walloon authority. We present the French and the Flemish sectors separately because of the largely independent implementation activities on each side.

"The project is on-going. On the French side, the land appropriation and archaeological surveys required to construct the Canal "Seine-Nord Europe" (SNE) are well advanced. Some important networks have been deviated to facilitate the future works, not least the lowering of the A29 highway. The Competitive dialogue related to the construction and operation of the Canal SNE is underway. On the Lys River, both in France and Belgium, activities are progressing and some environmental issues are still due to be solved, in particular with the development consent expected in 2012 on the French side and on the Belgian side for Condé-Pommeroeul."\(^{48}\)

48 Ibidem.
The delays occurring on the French side have had an immediate effect on the Belgian developments just across the border due to necessary coordination. Delays by the French partner have had particular repercussions on the sections concerning Lys and Pommeroeul-Condé. A thorough analysis of the actual situation was planned for the end of 2012 in order to assess the necessary measures to reduce delays that may affect the eligibility period for works already set for the end of 2015. The canal is planned to be fully operational in 2019.49

12.1. FRANCE

The projected Seine-Nord Europe Canal will form a new system for freight transport between France, Belgium, the Netherlands and Germany within the high-capacity waterway network which serves the major economic centres of Northern Europe. This geographical area is characterised by intense cross-border traffic movements and this north-south-route has one of the highest levels of road saturation of the European continent; 132 million tonnes of freight transited this corridor in 2000. The new canal will provide a connection between the Seine river basin, particularly the Paris (Ile-de-France) region as well as the Le Havre and Rouen seaports, with the River Rhine and adjacent areas. The high-capacity Seine-Nord Europe Canal will be built between Compiègne and Aubencheul-au-Bac.

The Seine-Nord Europe Canal involves building, within the Picardy and Nord-Pas de Calais regions, a new canal 106 km long, with technical characteristics corresponding to “class Vb” of the European classification of waterways of international interest.50

Voies Navigable de France (VNF) is the implementing body in France. The agency runs a dedicated website for the project (http://www.seine-nord-europe.com/) with information and a selection of documents for download. For our analysis, however, the available documentation is insufficient, particularly regarding the financial planning.

12.1.1. Methodology and comments on the CBA and project selection

An economic evaluation was prepared in 2006 for the enquiry prior to the Declaration of Public Interest as part of the official French procedure for the planning of large-scale infrastructure projects. It was conducted by specialised French and Belgian consultancies. Earlier – in June 2004 – after taking into account the findings of the economic studies of the previous phases of the project (1998-1999) and the national debate of 2003 on major infrastructure projects, VNF set up an economic studies monitoring committee made up of eight French, Belgian and Canadian transport economists to prepare the preliminary design studies. This arrangement was made to ensure that all the issues of the project would be taken into consideration within a framework broadened both geographically and through the nature of the project benefits, by comparison with the preliminary studies. The committee worked in collaboration with the economic consultants on the methodological choices and contributed its expertise to drafting the socio-economic assessment. The main tasks carried out by the committee were:

- the construction of macroeconomic scenarios, particularly involving validation of the basic economic reference assumptions (growth, transport policy);
- methodological choices on modelling adapted to the very particular characteristics of freight transport by inland waterway;
- methodological choices calculating the advantages under the socio-economic assessment.

The CBA is carried out on two levels: France only, and Europe i.e. France, Belgium, Netherland, Germany. It is argued that about one-third of the benefits are realised outside France. The CBA also differentiates between the implementation of the project with public funding alone, or with the inclusion of public-private partnerships, which changes the nature of the risks and the associated costs during the investment phase. The calculation

mechanism is not transparent in the available document, as only the results are documented.

The base case assumes an EU contribution of 19%. In addition, sensitivity tests are carried out for lower and higher EU contributions of 10% and 30% respectively. We gather that the EU contribution is used to reduce project costs for investments. This procedure is questionable since EU financial contributions only reduce financial costs of the participating countries, and do not affect the overall economic costs. A similar argument relates to the participation of the private sector.

A CBA run for funding without EU grants and without support by the private sector has not been carried out. Hence we can only estimate that in such a case the internal rate of return would be in the order of 4.2%, which is still a respectable rate for an inland waterway transport project.

A separate “logistics scenario” has been considered, which is in fact an alternative transport demand scenario with higher traffic assumptions. EIRRs for this case are marginally higher. They also increase by approximately one percent-point when external costs are internalised.

According to VNF, a complementary study was carried out and approved by the EEIG in 2010. This study aimed to more precisely define the expected impacts of the project, focused on French territories. All the impacts (growth, traffic, added value) have been updated. The relevant documents were, however, not made available to us for the first study.

The CBA is assumed to conform with French government regulations. Sensitivity tests on toll levels below and above the central toll rate of EUR 2.5 per tonne (EUR 1.75 and EUR 3.25 respectively) have been carried out. The impact on the EIRR is roughly +/- 0.3 points, and is hence relatively limited.

The scenario updated in 2010 is based on a pivotal toll value of EUR 2.9/ton.

It appears that the project has not undergone a selection process in France. The proposal of the French and Belgian governments to present it for co-funding by the European Commission was quite clearly based on political considerations. The project was in fact presented to the EU at a very late stage of the 2007-2013 programming and was added to the original list of 29 priority projects as n° 30.

12.1.2. Methodology and comments on the environmental analysis

The principal effects on the environment are those related to the actual construction works, with some residual effects to be considered during subsequent operation of the Seine-Nord Europe Canal. The development works aimed at improving the navigable characteristics of the existing waterways have only minimal impacts on the environment. The assessment concludes as follows:

- The land requirement for the development works to the north and south of the Seine-Nord Europe Canal is limited. There is no significant impact on agriculture, on natural habitats or on heritage as a result of these works;
according to the studies carried out for the Oise-Aisne agency (Entente Association), the recalibration of the river Oise upstream of Creil provides an overall improvement to the conditions of flood flows of the Oise without any impact on the water levels at the confluence between the Seine and the Oise;

• aquatic environments are not affected by the works, with the exception of some short-term impacts during the dredging. By using vegetation for bank protection along the modified river sections the impacts of the river engineering works can be reduced. In the Compiègne-Creil section, a system of alternating one-way navigation will be used to reduce the effect of river bend easing and widening, without imposing any significant restrictions on navigation;

• the noise generated by the increase in waterborne traffic is substantially lower than the thresholds of noise considered as prejudicial for other infrastructure projects. The modal shift from road and rail to waterborne freight will lead to an overall reduction in noise;

• water consumption resulting from the operation of the existing waterway network will increase on account of the increase in traffic. If necessary, water recycling plants will be installed at the locks to reduce and control water consumption effectively;

• the increase in waterborne traffic has only a limited impact on bank erosion;

• the quality of air is improved in the corridor close to major roads and motorways, without causing any pollution in the area immediately bordering the waterway; construction of the link gives rise to a reduction in carbon emissions producing the greenhouse effect, thanks to the modal shift from road to water transport:

• doubling of the locks of the Seine–Nord Europe Canal involves no additional water consumption. The increase in waterborne traffic resulting from this development improves the modal shift, with positive effects on the energy balance and carbon emissions.

As far as we can judge no environmental aspects are missing.

No specific climate impact assessment has been conducted regarding the Seine-Nord Europe project. All climate-related issues are being covered within the EIA.

12.1.3. Characteristics of the transport demand scenario and its economic drivers

In 2000, 258 million tonnes (Mt) of non-containerised freight and almost 631,000 containers (TEU) were transported between the regions of the project area concerned, of which 90 Mt and 320,000 TEU were concentrated in the north-south corridor, to be served by the Seine-Nord Europe project.

The presence of high-capacity waterways has a major impact on the market share of inland water transport. On sections where high performance is possible, such as on the Seine, water transport has a significant market share. On the other hand, the constraint of capacity on the north-south waterway route (Canal du Nord limited to 650 t) limits the water transport share to a little over 3%.\(^5\)

\(^5\) Seine-Nord Europe Canal/public enquiry dossier, 18.
By connecting the Seine basin to the European high-capacity waterway network, the Seine-Nord Europe Canal project will contribute to reducing the isolation of this waterway system and making it a possible alternative solution to the growth of road traffic (74% market share in 2000) for the supply of both consumer goods and equipment.

Connection of the Seine basin to the north European network induces an increase in waterway traffic of between 3.2 and 3.7 million tonnes in 2020 (see table below).

Table C12-2: Traffic forecast on the Vernon-Gaillons section

<table>
<thead>
<tr>
<th>Scenarios of behaviour of economic stakeholders</th>
<th>2020</th>
<th>2050</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Trend</td>
<td>Central</td>
</tr>
<tr>
<td>“Continuing current trends”</td>
<td>18.5 Mt</td>
<td>20.0 Mt</td>
</tr>
<tr>
<td>“Development of inland water transport”</td>
<td>structuring effect measurable as from 2020</td>
<td>25.8 Mt</td>
</tr>
<tr>
<td>Traffic without Seine-Nord Europe</td>
<td>15.3 Mt</td>
<td>16.3 Mt</td>
</tr>
</tbody>
</table>

Source: VNF.

Overall, the interconnection of the Seine basin induces an additional traffic of 25%, originating partly in the increase in the amount of traffic using the Seine-Nord Europe Canal (+1.6 Mt in 2020 under this central scenario) and partly in the fact that the Seine basin itself becomes more dynamic through the greater competitiveness of inland water transport in a more open and fluid market (+2.1 Mt in 2020 under this scenario).52

The data used to define the volumes of traffic by origin and destination are based on a combination of data from various sources in France (SITRAM, Seaports, Customs, VNF) and Europe (TEN-STAC). The modal share of the road transport, which has the dominant market share (87% versus 8% for rail and 5% for water transport), is explained by the saturation of the railway network described in the previous chapter (particularly on account of the priority given to passenger transport on the approaches to urban centres) and by the absence of an interconnection of the high-capacity waterway network.

The traffic forecasts were developed by VNF and external consultants. The detailed traffic studies were not available for review.

12.1.4. Investment cost and structure of financing

In the mid-term evaluation it was concluded that the project is significantly behind schedule due to political, financial and technical issues. Thus, it will not be completed by the end of 2015. Given this delay, it will not be possible to maintain EU support for the part of the activities to be carried out after 2015. This reduces the TEN-T contribution by approximately EUR 44.3 million. The completion of around 85% of the project by the end of 2015 is more realistic, provided that the following conditions are met:

52 Seine-Nord Europe Canal/public enquiry dossier, 44.
the competitive dialog of the PPP process is launched by the end of 2010
the competitive dialog is completed and the contract awarded by the end of 2011
the project continues to respect the revised implementation planning provided in the 2010 ASR.53

A thorough analysis of the actual situation was envisaged for autumn 2012 in order to assess the necessary measures to reduce delays that may affect the eligibility period for works already set for the end of 2015. No information was released by VNF on this subject. The canal is anticipated to be fully operational by 2019.54

Table C12-3: Breakdown of costs in the current phase 2007-2013 in million euro

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Total project cost</td>
<td>4 258.7</td>
</tr>
<tr>
<td>EU contribution</td>
<td>420.2</td>
</tr>
<tr>
<td>National budgets</td>
<td>874.5</td>
</tr>
<tr>
<td>Regional/local budget</td>
<td>962.1</td>
</tr>
<tr>
<td>Action promoter (public or private)</td>
<td>1 986.3</td>
</tr>
<tr>
<td>Other sources</td>
<td>15.7</td>
</tr>
</tbody>
</table>

12.1.5. Cost developments over the life-cycle of the project

As the planning phase is still ongoing, investment cost estimates may change at any point in time. We do not have information on the most recent cost estimates. An audit of all large transport infrastructure projects in France has been ordered by the new French government and the results are expected shortly.

53 TEN-T Trans-European Transport Network (. Mid-Term Review of the 2007-2013 TEN-T Multi-Annual Work Programme_ Project Portfolio (MAP Review), 179.

12.2. BELGIUM: FLEMISH SECTOR

Figure C12-3: Belgium part of the project

The waterway Seine-Scheldt project includes the path of the channelled Lys of Deûlémont to Deinze, the diversion canal of the Lys to the junction with the Canal Ghent-Ostend, the Ghent-Ostend to the confluence with the ring canal and the Noordervak of the ring canal to the lock of Evergem.55

12.2.1. Methodology and comments on the CBA and project selection

In 1999 a cost benefit analysis “Economische studie verbinding Seine-Schelde, Technum ESEG, 1999” was conducted in order to clarify whether an upgrade of the Seine-Scheldt could be realised. This was updated in 2005 by Belconsulting. Within the latter CBA four different project alternatives are compared which will be outlined further in the analysis. One of the guidelines used during the preparation of the CBA is the “Dutch Directives for the Waterways” - Nederlandse Richtlijnen Vaarwegen (Commissie Vaarwegbeheerders, 1999).

In the CBA for Seine-Scheldt the following effects are addressed:

- Direct effects: these are the direct costs (investment, maintenance) and revenues (financial + travel time) resulting from the implementation of the project.
- Indirect effects: changes in society that are not directly related to the project, but arise as a result (creation or geographical shift of employment or attraction of foreign businesses).
- External effects: these are side effects of the project, such as environmental impacts (emissions, noise), effects on other infrastructure (congestion), and social aspects (safety).

Previous studies have shown that project alternative 3 is preferred to the other alternatives. This alternative scores the highest for both monetary and non-monetary effects, environmental and landscape impacts and social impacts. The cost benefit analysis shows that project alternative 3 is the only alternative with a positive balance, and therefore with a positive yield ratio.

The project selection is based on the previously conducted survey, the spatial development, and the results of the working profile. The development consists of 15 plans with the spatial development and a descriptive section with a motivation of the proposed interventions in each of these plans. This spatial effect is preceded by a summary of the design principles which may be used.56

\textbf{12.2.2. Methodology and comments on the environmental analysis}

The available document is a summary of the EIA conducted and does not mention the followed guidelines. Furthermore, no separate CIA was conducted as CO\textsubscript{2} emissions have been covered within the EIA. The following aspects have been taken into account in addition to environmental aspects: ground and water; noise; air; human life; fauna and flora; monuments and landscapes. There is no indication that pertinent relevant environmental aspects have not been addressed.

\textbf{12.2.3. Characteristics of the transport demand scenario and its economic drivers}

In 1999 a prospective study of traffic forecast was conducted. In 2003 the Lys counted approximately 6.7 million tonnes of transported goods which amounts to nearly 22,000 cargo ships.

This indicates that there is a relationship between the development of the industrial production in Belgium and the growth of inland transport on the Lys. This relationship is also being incorporated into the autonomous growth of navigation on the river Lys, resulting in an annual growth of 1.4%. This increases the transport from 6.7 million tonnes in 2003 to 9.0 million tonnes in 2025.57

Unfortunately there was no detailed description of the main governing assumptions in the summary report of the EIA, CBA and transport demand forecasts received from Belconsulting N.V. We have tried to obtain the original documents, which presumably contain this information, but they were not received in time. The relevant original document is: "Actualisatie economische studie: trafiekprognose". Concerning this Upper Schelde part of the project there are, as far as our research shows us, no updates available. There are however, studies which conducted new transport scenarios for the area concerned.

\textbf{12.2.4. Investment cost and structure of financing}

To have a better understanding of the total cost estimations it is important to clarify the different alternatives proposed by the project. Unfortunately we have insufficient information on the financial engineering. The project is based on the following four project alternatives:

- Alternative 1, depth 4.0 m class Vb ship "Full two-way"
- Alternative 2, depth 3.5 m class Vb ship "Draft-limiting class Vb"
- Alternative 3, depth 3.5 m class Vb "Keep current waterline, tight profile Class IV / unidirectional class Vb"
- Alternative 4, depth 3.0 m class Vb ship "Profile Seine Nord".58

The total cost of the project is largely determined by the cost of the processing of the ground mortar. Estimates were calculated for the maximum and minimum scenario for all alternatives. The following estimates (minimum, maximum and average) form the total cost of the Seine-Scheldt project.

Table C12-4: Total cost estimate for the Flemish project component (EUR million)

<table>
<thead>
<tr>
<th></th>
<th>Alternative 1</th>
<th>Alternative 2</th>
<th>Alternative 3</th>
<th>Alternative 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum total</td>
<td>353.308</td>
<td>288.715</td>
<td>176.669</td>
<td>321.760</td>
</tr>
<tr>
<td>Maximum total</td>
<td>446.285</td>
<td>353.222</td>
<td>213.031</td>
<td>401.959</td>
</tr>
<tr>
<td>Average total</td>
<td>399.797</td>
<td>320.969</td>
<td>194.850</td>
<td>361.859</td>
</tr>
</tbody>
</table>

The delays which occurred on the French side have had an immediate effect on the Belgian developments just across the border due to necessary co-ordination. This particularly concerning the Lys and Pommeroeul-Condé sections.

12.2.5. Cost developments over the life-cycle of the project

The investment costs were occasionally reviewed and adjusted. The first economic analysis in 1999 predicted costs which were updated in 2005. However, there is no specific documentation available for this, although one can assume that at the time of the review all new elements were taken into account.

12.2.6. Developments since the last study

The Annual Activity Report of the European Coordinator for project 30 Inland Waterway Seine – Scheldt (Peijs 2013) notes that: "As far as the sections in Flanders and in Wallonia are concerned, the works are progressing according to the schedule". Therefore this report on developments since the last study focuses on the French part of the project, the Canal Seine Nord Europe (CSNE) as well as on the comments of VNF that we received to our first study.

12.2.6.1. Summary of findings of the first study and comments by VNF

The following part refers to the development of the project in France.

The main critical findings of the first study, submitted to the EP on January 8, 2013, were:

- Missing upgrades of the 2006 CBA.
- Missing availability of documents, e.g. for the EIA and SEA.
- Limited documentation on the Belgian part (upgrading the Upper Scheldt and the river Lys).

In a letter to the EP in March 2013 VNF commented very critically on the first three of the above bullet points. The main points put forward are:

- No clear distinction has been made between the European project Seine-Scheldt (from Conflans (FR) to Gent (BE)) and the canal Seine–Nord Europe, which is the main part of the European project and includes the stretch from Compiègne to Cambrai in France (= canal Seine Nord Europe, CSNE). This critical response was
provoked by a misleading investment cost figure in the first study by the consultants for the CSNE project (EUR 5.9 billion instead of EUR 4.3 billion) in the text on p. 72. All cost figures were given correctly in the appendix tables.

- Strict rejection of the statements in the study by the consultants on the missing availability of documents and missing transparency.
- Comments on the general recommendations in the study by the consultants, in particular arguments against the consideration of wider economic impacts and in favour of using partial equilibrium approaches as applied in traditional CBA.

We will come back to these arguments after reporting on the changes which have happened since December 2012 concerning the project (section 2) and the assessment methodology in France (section 12.6.2).

12.2.6.2. Reconfiguration of the CSNE project in 2013

Commission Mobilité 21

The French Ministry of Transport has established a Commission “Mobilité 21” to develop a prioritisation hierarchy among the projects proposed by the Scheme of National Infrastructures for Transport (SNIT). This Commission submitted a final report on 27th June 2013. It clustered the projects into three categories:

- Category 1: high priority, to be accomplished before 2030
- Category 2: medium priority, to be accomplished between 2030 and 2050
- Category 3: very long-term, to be accomplished eventually after 2050.

The projects of SNIT have been assigned to these categories subject to four criteria of evaluation (contribution to major public objectives; ecological performance; social/territorial performance; socio-economic performance) and to two financial scenarios:

Scenario 1: Increase of the total investment budget for transport by EUR 8-10 billion up to 2030, which is in line with the budget development of AFTIF (French National Agency for Transport Infrastructure Finance), which is EUR 2.26 billion per annum between 2017 and 2030.

Scenario 2: Increase of the total investment budget for transport by EUR 28-30 billion up to 2030 which would require an increase of the annual AFTIF budget by about EUR 400 million per annum.

In the case of Scenario 1 only 9 projects would have a chance of being realised by 2030, with no inland waterway (IWW) projects among them. In the case of Scenario 2 a total of 20 projects could be realised by 2030, including the IWW project Bray-Nogent (Seine). The large IWW project Saone-Moselle and/or Rhone-Rhin has been allocated to the third category (very long-term).

The Commission Mobilité 21 has excluded the projects Lyon-Turin (high-speed rail) and Seine-NE from ranking. First of all international agreements have been signed which make it necessary to continue with the projects. Secondly it was accepted that reconfiguring the projects makes it possible to cut down investment costs. Thirdly it appeared realistic to receive a much higher co-finance from the Commission than calculated in the 2006 CBA. Co-funding was expected to increase from less than 10% to more than 30%.
IGF (Inspection Générale des Finances) and CGEDD (Conseil Général de l’Ecologie et du Développement Durable) have examined the CSNE project based on the 2006 studies and later documents and delivered their opinion in January 2013. It was found that the estimates of investment costs were too low while the estimate of revenues seemed too high. The total cost figures according to the latest documents of VNF amounted to EUR 5.4 billion (compared to EUR 4.3 billion as estimated in 2009). Even if the EU co-finance increased from EUR 0.33 to 1.58 billion - corresponding to 30% co-finance as assumed by VNF – there would still be a major risk for the French federal financial agency (AFTIF: Agence de Financement des Infrastructures de Transport de France) which would have an impact on the realisation of other projects. Beyond the cost risks, the expected revenues from user charges seemed to be too optimistic which would cause an additional load on AFTIF because the private partners of the intended PPP regime would not be able to increase their share of the risk. On the contrary, after the economic crisis, their interest in taking long-term risks drastically decreased.

IGF/CGEDD stated that despite the less favourable changes after the economic crisis the socio-economic evaluation of the project had not undergone a revision. They particularly mentioned:

- the strong reservation, which had already been expressed since 2006, against the socio-economic viability of the CSNE canal, not regarding the other sections of the Seine-Scheldt project.
- the weak reasoning for the ecological benefits of the project.
- the negative evolution of all economic and financial parameters of the project between 2008 and 2012 which would set the social value at risk.

As a response to the first point, VNF delivered some data from a recent forecast. According to these data (see sections 12.6.2.4 and -2.5) the new canal would cause a modal shift from road to IWW of 5.6 million t/a and from rail to IWW of 3.3 million t/a, i.e. a shift of 3.8% from road and of 13.3% from rail. IGF/CGEDD concluded that the coherence with the political actions in favour of the railways should be discussed.

IGF/CGEDD recommended taking into account the unfavourable development of economic and financial parameters. The costs would need to be adjusted to higher values because of increasing prices of construction work, the changed scheduling of works, the underestimate of several cost components and the costs of pre-financing. At the same time the revenues from user charges on the canal needed to be reduced. Both adjustments would need increased subsidisation. The arising financial problems cannot be solved without a large degree of co-finance from the EU. IGF/CGEDD finally recommended the preparation of a new comprehensive report with an appropriate base year and re-examination of the configuration of the transport infrastructure in the corridor to determine the best solution.

Rapport Pauvros

In April 2013 the Ministry of Transport charged Deputy Rémi Pauvros with a reconfiguration of the Seine – NE project to present it to the European Commission with the objective of benefitting from the EU financial support in the period 2014 to 2020.

a) Reconfiguration

The reconfiguration of the project includes

- Redesigning the alignment and using parts of the existing canal du nord
- New concept for sealing the ground
- Redesign of locks
- Re-design of multi-modal platforms
- Improved water regulation in the region of Nord Pas de Calais
- Optimisation of construction work.

The cost savings are estimated at EUR 550-650 million such that the overall costs of the Seine NE canal would be reduced to EUR 4.4-4.7 billion. While the volume of cost savings is remarkable it is not clear whether this has impacts on the benefit side (e.g. reduced barge standard from Vb to Va on some sections, changed multi-modal platforms).

b) Wider political and economic context

Beyond the issue of reconfiguration the Rapport Pauvros addresses a number of aspects which are to underline the high importance of the project for French and European transport policy:

b1: General economic arguments in favour of the project

The CSNE project offers the chance to create an integrated inland waterway network which connects major seaports, hinterland ports and intermodal freight centres and is able to divert a considerable share of road transport to environmentally more friendly transport modes. It will lead to improved competitiveness of enterprises in the connected regions and will serve to accelerate regional economic development. It will allow the generation of a higher proportion of renewable energy and in this way contribute to the politically intended transition towards sustainable energy production. Substantial employment effects are also expected: about 10,000 full time jobs during the construction phase and up to 50,000 full time jobs in the year 2060 in regions with relatively high unemployment rates.

b2: Reconfiguration of the financing scheme

The CBA of 2006 assumed a financial contribution of the European Commission of 6.22% which totalled EUR 333 million. A PPP was planned to be established with two private partners (Bouygues and Vinci) who were expected to take on a financial load of more than EUR 2 billion. As the cost estimate of EUR 4.3 billion for CSNE (status 2009) proved too low and an increase of more than EUR 1 billion was expected, the private partners withdrew their commitment such that a new financial arrangement became necessary. The new financial scheme is based on the declaration of Tallinn on TEN-T in which the Ministers of Transport of France, Wallonia, the Netherlands and the European Commission, represented by Commissioner Sim Kallas, have agreed to foster the CSNE project and to co-finance it by up to 40% of the eligible costs in the programming period 2014 to 2020. CEF-funding would be the central financial

60 These figures don’t correspond exactly to the figures delivered by VNF to IGF/CGEDD as given in section 12.6.2.2.
61 Decided during the TEN-T Days held in Tallinn, October 2013.
instrument. The remaining financial load should be carried by the federal state and the regions touched by the project. Credits from EIB are also under discussion. The process of financial negotiations is continuing and several regions have announced their willingness to contribute financially to the canal project, while others have agreed to co-finance the multi-modal terminals on their territory. While the recovery of the major part of costs of maintenance and operation is expected through user charges, the magnitude of such charges and the resulting revenues are still undecided.

b3: Reconfiguration of the governance scheme
After abandoning the PPP it has become necessary to construct a new governance scheme based on the commitment of public partners. It is planned to establish a project company in which the federal state, the regions and the VNF as a public enterprise are represented on the board. The management of the Albert canal in Belgium between Antwerp and Liège is discussed as a possible prototype for the governance scheme to be established.63

b4: Suggestions for fostering intermodal collaboration
While the project aims, in the first instance, to strengthen the competitiveness of inland waterway shipping in France, there is a second aim of exploiting synergies and intermodal complementarities. Intermodal platforms, as they are planned in agglomerations (Paris, Lille) and intersections of transport corridors (Longueil Sainte Marie, Marquion), should improve overall efficiency, the modal share of environmentally friendly transport modes and the commercial activities in the concerned regions.

Recommendations
The Rapport Pauvros finds that the overall impacts of the CSNE project are positive and improve the transport efficiency as well as the economic prospects of the regions. It underlines the effects on competitiveness and employment in regions of Northern France with high unemployment which have not enjoyed major improvements in the freight transport system in the past decades. It is reminiscent of the success story of the Albert Canal in Belgium and of its contribution to the development of growth and employment under sustainable logistics conditions.

63 The Albert canal is managed by the de Scheevaart company under public law, owned by the region of Flanders.
12.2.6.3. New studies produced in 2013

SETEC study on economic impacts of CSNE

The SETEC study on the economic impacts on the French side of the Seine-Scheldt waterway tries to answer four questions (SETEC 2013):

- Will CSNE enhance the development of the ports’ performance in France?
- To what extent will CSNE contribute to the regional, national and European economic development?
- Will the project contribute to a balanced spatial development?
- Which triggers will be necessary to develop the inland waterway transport in a way that it will lead to a substantial modal shift?

To answer these questions SETEC explores numerous reports, studies and documents, interviews major actors in the field, analyses the parallels with a similar infrastructure project, the Albert canal in Belgium, and develops a prospective vision based on expert judgement. The study describes the current situation and future development prospects in some detail for 9 freight transport segments (commodity groups) and analyses the impacts of CSNE.

SETEC does not expect a major market growth for bulk cargo segments. In particular the transport of cereals tends towards stabilisation of volumes. CSNE offers the chance to shift bulk cargo flows from road to IWW, as for instance on the corridor from Nord Pas de Calais to Rouen which is the largest EU port for cereals. The market for wholesale commodities will grow modestly and the canal provides more options for transporting palletised goods on the waterway. The report mentions that the container standard of 20/40 ft is not optimal for this type of transport; 45 ft containers would be better for meeting this demand. The market for container transport will continue to grow, but at a lower level than the forecasts made in 2006. Although the CSNE will only allow for 2 stacks of containers the prospects for attracting a considerable market share are evaluated positively.

Figure C12-4: Impacts of CSNE on transport segments

<table>
<thead>
<tr>
<th></th>
<th>Compétitivité</th>
<th>Valeur ajoutée</th>
<th>Emplois</th>
<th>Rélocalisation Territoire</th>
<th>Ouverture UE</th>
<th>Accessibilité bassins de consos</th>
<th>Accessibilité Export</th>
</tr>
</thead>
<tbody>
<tr>
<td>Céréales</td>
<td>++</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>++</td>
</tr>
<tr>
<td>Granulats</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>++</td>
</tr>
<tr>
<td>Grande distribution</td>
<td>+</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td></td>
<td>++</td>
</tr>
<tr>
<td>Métallurgie</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Chimie</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Produits recyclés</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Automobile</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Mécanique Colis Lourds</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
</tr>
</tbody>
</table>

Source: SETEC, 2013.
The SETEC report also analyses the role of the ports of Le Havre, Rouen and Dunkerque and their chances of development after the CSNE is implemented. It also describes the importance of the multi-modal platforms for modern logistic supply chains.

Summing up, the CSNE is expected to increase IWW transport in France by 0.5-3.8% by 2030 and by 2.1-5.8% by 2060. The modal shift for IWW is estimated at +4%, while road transport goes down by 2%. The port of Le Havre will particular increase in importance for container shipping and is expected to attract +0.15 million TEUs by 2030 and 1.2 million TEUs by 2060. These changes are primarily due to increased competitiveness of IWW transport and, to a lesser extent, to increasing transport volume.

SETEC also addresses wider economic impacts such as the employment effects, which were highlighted in the Rapport Pauvros, and the potential for improving the competitiveness of regions and their attractiveness for tourism. It ends with a case study on the economic dynamics which have resulted from the Canal Albert in Belgium, opened in 1939. This canal has a similar length (114 km versus 106 km of the CSNE) and can be regarded as a success story for transport and economic development in the busy corridor between Antwerp, Brussels and Liège. The transport volume in 2012 was about 22 million t. However, the different dimensions should be noted: The width of the Albert canal was originally 50m, was then extended to 63m and is now 100m in most sections (CSNE: 54m). The clearance is presently 7m, allowing for 3 layer container barges, and there are plans to increase the clearance to carry 4 layer container barges. The barge standard is presently ECMT VIb, i.e. barge convoys carrying up to 10,000 t. There are plans to extend the standard to ECMT VII which would increase the loading capacity by a further 30%. Therefore the Canal Albert case study is very helpful for getting an impression of the transport and economic activities which follow such a mega investment in transport infrastructure. Care should be taken, however, of deriving quantitative conclusions for canals of smaller dimensions.

SETEC (2013) study on socio-economic evaluation

The background study of SETEC for the Commissariat Général à la Stratégie et à la Prospective, September 2013, on the adjustment of transport modelling and the revision of the socio-economic evaluation is not currently available. VNF has announced it would send a summary of essential figures but this has not happened.

12.2.6.4. Conclusions and response to the feedbacks

Conclusions

The properties of the project have changed substantially from the status at December 2012, which was the deadline for our first study (Schade et al. 2013):

- Critical comments were given in the report on Mobilité 21, and the project was excluded from an assignment to the priority categories due to the existence of an international agreement.64
- Critical comments were given in the report by IGF and CGEDD. An update of the 2006 figures on forecasting and assessment was recommended.
- The Rapport Pauvros announced a substantial reconfiguration of the project which leads to cost reductions with an order of magnitude of EUR 550-650 million. The

64 Agreement signed at ministerial level between France, Wallonia, Flanders and the Netherlands in July 2007.
report does not mention changed transport forecasts and revised CBA figures. It underlines the economic importance of the project and wider economic benefits.

- SETEC consultants have prepared two studies, one on the economic importance of the project (the baseline of the associated Rapport Pauvros chapters) and one on the revision of forecasts and the CBA. The latter could not be made available.

- While a number of new documents have been received which describe the changes of the project procurement, the most important document is still missing: the revised forecast and CBA. Therefore it is still not possible to provide a comprehensive evaluation of all project documents. While the political promotion of the project was successful, partly supported by the Rapport Pauvros, a scientifically based report on the economic viability of the project, eventually based on the Rapport Quinet (2013), is still missing.

Response to the feedbacks to our first study

(1) Preliminaries

The comments by VNF consist of (i) clarifications and amendments of facts and figures on the Seine-Scheldt/Seine Nord Europe canal project and (ii) some supplementary and partly critical scientific remarks with respect to the general findings and recommendations of the first study on „TEN-T Large Projects – Investments and Costs“ as of April 2013 (Schade et al. 2013). We prefer to respond separately to these two parts although they are not clearly separated in the VNF comments as they follow the sequence of the first study.

In the comments “VNF and the Scientific Committee in Charge of Supervising the Traffic and Transport Studies” are credited as the authors. The comments have been added as annex 3 to this case study. The comments include the information that VNF have established several consultant bodies, such as an “Economic Committee”, a “Scientific and Technical Committee”, and a “Review Team”. It is not clear which of these bodies has participated in preparing the comments. The authors of the comments are not given and it is also not clear which members of the responsible committee have agreed to the comments.

(2) Clarifications and amendments of facts and figures

(a) Cost figure

The responsible author for the first Seine-Scheldt case study, O. Meyer-Rühle, communicated the reasons for misunderstandings in a letter of 28th February 2013. A wrong figure in the investment costs of the CSNE, i.e. the French part of the project, could not be corrected in the main part of the study because the correct information arrived after the deadline.

Conclusion: The investment costs for CSNE have to be corrected to EUR 4.3 billion (2009 estimate).

(b) Missing documents and transparency

When the first study was completed in December 2012 new developments for the project had been initiated for which no documents were available to the consultants. VNF was not able to submit those documents because they were either not finalised or not released by the Ministry of Transport.

Conclusion: The comments by the consultants on missing documents and transparency should not be interpreted as a general criticism of VNF’s communication policy.
(c) VNF has been very helpful in submitting important documents which were released after December 2012. However, a most important document on the revisions of forecasts and CBA (SETEC, 2013) could not be submitted because it is still in the process of approval.

Conclusion: The procurement of such a complex project is a difficult process and the project managers are not usually willing to provide all information to third parties. While we understand this situation we are not able to confirm that the data situation is transparent and that the project fulfils all essential criteria for maturity.

(3) Scientific comments

European Models, p. 13

This comment is hard to understand. There have been attempts to construct European multi-modal models for more than 10 years. Several EU projects have been launched to build up data and modelling bases for this issue (SCENARIOS, SCENES, EXPEDITE). Databases have been constructed (see the ETIS Plus projects of the EC) and used as inputs in the transport models for TEN-STAC (prepared for the TEN-T revision 2004) and TRANSTOOLS (prepared for the TEN-T revision 2011 and applied in the TEN CONNECT study). These models are based on NUTS 3 and project the different existing surveys (country surveys and Europe wide surveys like DATELINE) using a common base year, and quite strong assumptions. Our point is that the current multi-modal models on a European scale need to be improved because they have not yet achieved the level of reliability necessary to check and co-ordinate country-based forecasting approaches. If the VNF comment suggests that this improvement is not possible or even useless, we disagree. Otherwise the comment would further back our arguments.

European added value and wider economic impacts, p. 13 and p. 43

There seems to be a misunderstanding about the objective of our study. It was not our task to define the European added value and to develop a measurement concept. Nevertheless we are grateful for the reflections presented on p. 3 of the comments because they partly underline our finding that further research work is necessary to come to a clear definition and measurement concept for the European value added of large scale projects or network configurations. At this point we do not see any point of disagreement.

However, we do not agree with the statement in the comments that wider economic impacts are less important than improvements in traffic, environmental and climate change dimensions and a sensitivity analysis and risk management. We do not understand this mix of different subjects of evaluation. Wider economic benefit approaches are not intended to substitute CBA or environmental or safety impact measurements. They are also not in conflict with sensitivity and risk analyses. The idea behind a wider economic approach is that large projects may cause economic (structural) changes which induce second round impacts in the influenced area/corridor. Conventional CBA is not appropriate for measuring and evaluating these types of impact. The EU Commission has applied an approach for the evaluation of such impacts induced by the core network for TEN-T which is published in a communication from 2011, (European Commission 2011). We have reviewed this publication and find it most interesting, although it states that more research is needed to develop a harmonised approach at the EU level. Furthermore, we have quoted several research approaches which work in this direction and which can serve as a baseline for future research on this issue.
Returning to the European added value, we think that the quoted extended research approaches are, in principle, appropriate to serve as a baseline for measuring and evaluating the European added value.

Financial the Priority TEN-T Networks, p. 25, Table 2
This is a good point and there is no disagreement with it.

TEN-STAC project, p. 36
We are grateful for this argument as it supports our view which has been explicitly pointed out in the study. Of course we appreciate the comments on the passenger model because we have contributed to its development. The comments about the freight modelling part are obviously based on limited information. The freight model has been described in the first two TEN STAC deliverables, the data inputs are given in some detail in deliverable D3 of TEN-STAC.

Leverage effects, p. 43
This seems to be the main controversy on the scientific side. The relevance of secondary economic effects grows with the volume of projects and their interdependency between each other and with economic sectors. In the neoclassical partial equilibrium approach such effects are ignored. We cannot understand the suggestion made in the comments to model such effects first within single countries, as secondary effects may particularly occur in a large spatial context and spread across borders. The issue of measuring a European value added cannot be tackled without an extension of the partial equilibrium approach. We share the opinion that the SCGE models are not yet mature and have stated so in the study. However, our literature review of this topic does not end with 1995 and we have quoted more recent approaches of equilibrium and disequilibrium modelling which show more promising prospects. This particularly refers to the assessment of different network configurations and the identification of parallel or over-investment on a network scale.

Concluding comments
We conclude from the comments that there is no basic scientific disagreement except with the treatment of wider economic impacts and the application of modelling approaches beyond partial economics CBA. The latter is still a matter of scientific debate and we understand the arguments brought forward in favour of focusing on the traditional CBA. We also agree that CBA is a necessary component of the economic evaluation of large-scale projects. However, we find that traditional CBA has a limited scope of capturing benefits of large projects or project bundles in an interdependent transport and economic system. The Rapport Quinet on the revision of the French evaluation method underlines in its chapter on “Enrichment of the Traditional Calculus” that the treatment of wider or secondary economic impacts is a challenging issue while it is currently not possible to include it into a standardised evaluation scheme. Therefore the Rapport suggests obtaining the appropriate analysis from independent consultants and monitoring/auditing this work by an expert group. The arguments in the Pauvros report and the underlying study of SETEC (2013) particularly emphasise this aspect of the CSNE investment, e.g. the impacts on regional economic structure and on employment. The increasing scope of the TEN-T context (from project via corridor to a core/comprehensive network context) also implies that the scientific base for assessing large scale projects, project bundles and network configurations needs further development.
Appendix 1: Chronology

1975: The 350-tonne capacity Saint-Quentin Canal, built in the 19th century, was the first canal to be studied.

1983-85: Studies led to the preparation of a waterways master plan in which priorities for inter-basin links were defined, including two options for the Seine-Nord link.

In 1989, the Chassagne report urged France to join the European waterway system and recommended three scenarios: proposing the rehabilitation of the existing, out-dated network, construction of the Seine-Nord and Rhine-Rhône links to avoid losing a considerable amount of traffic to foreign networks, reducing transport costs and improving safety.

1990-1993: Studies were carried out focusing mainly on the eastern option of the CSNE. In the same year (1993) the Secretary of State for Transport decided that the Seine-Nord Europe Canal project would be submitted to public debate. The project was formally included in the planned trans-European high capacity waterway network.

1996-1997: Preliminary studies were carried out and were particularly aimed at identifying the routing path representing the optimum solution among 21 possible routing paths divided into three main groups: the first close to the existing Canal de Saint-Quentin, the second close to the existing Canal du Nord and the third covering the various intermediate solutions between the other two.

1999: The economic study “Conseil général des Ponts and Chaussées” concluded that the solution of a waterway of Class Vb on a new path (corridors 2A-EC-N3) was the only solution which guaranteed long-term efficiency.

2002: The path designated as N3, along the Canal du Nord, was adopted in March 2002 in recognition of its reduced cost and its lesser impact on the environment.

2004: Seine-Scheldt selected as a European priority project in TEN-T (PP 30).

2008: Declaration of Public Utility; Decision by EC to finance the project.

2008 - 2009: Diagnostic archaeological studies and launch of the Invitation to Public Competition (ACPA) procedure for Public Private Partnership (PPP); land acquisition started.

2009-2011: Phases of the competitive dialogue that will lead to the signing of the partnership agreement (CP).

2011: Seine-Scheldt included in the proposed European Core Network (Corridor n° 9 Amsterdam-Marseille).
2012: In France, the first quarter of 2012 was dedicated to the competitive dialogue with the two selected bidders on the basis of their provisional proposals sent in October 2011, including those for the technical, contractual and financial parts.

2013: Mission IGF/CGEDD. Diagnosis of economic risks. Demand for revision of transport forecast and CBA.

2013: Report Pauvros. Reconfiguration of the project. Cost savings of up to EUR 650 million, underlining the economic importance of the project, in particular for Northern France.

2013: Study SETEC on economic impacts of CSNE. Relevance for freight transport markets. Wider economic impacts (employment).
Appendix 2: Selected bibliography

<table>
<thead>
<tr>
<th>Year</th>
<th>Type</th>
<th>Title</th>
</tr>
</thead>
</table>
Appendix 3: Comments on the first study

The following final pages of this case study present the comments received from VNF on the first study (Schade et al. 2013) and which are referred to in the previous sections by using the quoted page numbers.

Comments on
TEN-T Large Projects – Investments and Costs, Provisional version Study, 2013

VNF and the scientific committee in charge of supervising the traffic and forecast studies comment on points raised by the report draft, taking them in turn and emphasizing more specifically those concerning the Seine-Nord Europe project.

Decision making Process on TEN-T funding

<table>
<thead>
<tr>
<th>p.13-14</th>
<th>Proposed decision-making process on TEN-T funding – Key points for Seine-Scheldt and Seine-Nord Europe</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>As mentioned during the presentation in Brussels on January 22nd, we suggest to add in the scheme the main public and private stake-holders, and in particular the financing partners, as part of this process. For Seine-Scheldt the decision taken in March 2009 by the 3 Regions to cofinance the projet was the outcome of a consultation process which started in October 2004 and is still fully operational during the present procurement phase (of competitive dialogue with the potential private partners). In addition to the legal and mandatory environment and project development procedures, the installation of a “Consultative Committee” by the “Préfet coordonnateur” in October 2004, during the planning phase of the project, gave a regular forum (twice a year) starting in 2004 with 300 representative institutions and today with 1100 representative institutions in France and Europe. This approach gave a strong support for the planning and implementation phase of the project, in particular to take into account in the design of the project the expectations of the territories for land development, economic and employment issues. Similarly the consultation with the users of the transport system, the main beneficiaries of the project, allows to set-up the toll system of the project, a key issue for the financing of European transport projects. Considering the importance of the “decision process” on such a large project with major impacts at regional, national and European level, specific dedicated advising bodies independent of the owner (VNF) and of its financial and technical consultants have also taken a specific role in the assessment of the project and the decision making process of Seine-Scheldt and more specifically for Seine-Nord Europe during the last 9 years:</td>
</tr>
<tr>
<td></td>
<td>• An economic committee of 7 European economic experts, headed by Mr Emile Quinet, Professeur emerite Ecole Nationale des Ponts et Chaussées was installed in June 2004 to review the decision making process of traffic and economic studies, is consulted on a continuous basis since this date. The experts provided specific recommendations and advised at the various stages of the project, including recently for the update of the traffic forecasts in December 2012.</td>
</tr>
</tbody>
</table>

192
• A scientific and technical committee of 20 European technical experts (France, Belgium, Nederland, Germany) headed by Mr Geoffroy Caude (former Managing director of the public institute CETMEF(Centre d'études techniques, maritimes et fluviales) was set-up in October 2004 to review the development of the project up to the approval of the outline design in November 2006; since 2008 they reviewed the performance criteria of the project for the preparation of the competitive dialogue documentation; after the selection of the bidders in 2009, they were continuously involved in the finalization of the Procurement documentation and, since June 2011, in the review of the technical proposals and solution of the bidders to optimize the project; early 2013 their recommendations are part of the actual final phase of competitive dialogue to draft the terms of reference for the final offer of the bidders.

• A review team of 30 French and European experts was set up by the French Government in December 2005 to review the results of the traffic forecast studies before approval of the outline design; their recommendations published in July 2006 were incorporated in the outline design for the documentation of the public enquiry.

• The PPP scheme assessment was evaluated in 2006 by the MAPPP (a specific independent body of the Ministry of Finance) and given a positive recommendation in October 2006.

• Following the outline design approval in November 2006, a specific “Financing Mission” was set-up in January 2007 to propose the financing plan of the project on the basis of the PPP approach; after meeting the various potential co-financers of the project, they issued an initial financing report in July 2007, including recommendations for EU support for the period 2007-2013. The initial financing plan was approved in 2008 and the associated financing protocol between the key co-financers was signed in March 2009.

• The present IGF/CGEDD Mission installed by the government in September 2012 aims to review, independently of the Owner, the technical and financial results of the competitive dialogue held between April 2011 and October 2012 and to update the initial financing plan (set-up 4 years ago and before the financial crisis), specifically to take into account a potentially increased EU support for the works period (initially 6.22% to be increase up to 30%). This mission has also reviewed the traffic forecasts, taking into account the effects of the financial and economic crisis.

European models

It is hard to imagine how a multi-modal Europe-wide model could be built for a common year: it would require coordinating data surveys by mode across 27 countries. The only exception to this practical hurdle might be estimations of road O-D matrices from link counts, as described in the MYSTIC European project.

However, the multimodal model developed in 2004 by Setec/Stratec for Seine-Scheldt...
describes the 3 transport networks associated with the maritime and inland ports for North of France, Benelux and part of Germany. Its complexity lies in the definition at the same date of the transport data for the 3 modes of transport and for the 4 countries. Since 2009, the model has been jointly developed between the 3 partners (France, Flanders and Wallonia) and has been recently updated end 2012 to take into account the crisis period and the “lost decade” scenario.

European value added and wider economic benefits

p. 13 construction work. Methods to consider wider economic benefits, including European added value, are either not yet developed or are not applied to improve the selection of projects.

p. 43 more precise definition of the European added value which gives an opportunity for quantitative measurement.

The expression “European value added” should be accurately defined to provide an harmonized evaluation approach. In principle, value added is obtained by subtracting project income from inputs costs, but typically the analytical accounts of expenses needed to distinguish expenses on input from expenses on capital and labour needed for any project are nowhere available. The point needs explicitation and clarification.

As shown in Table 1 for roads, the notion of value added has the advantage of making clear that projects that are subsidized may have positive value added as long as their input costs are covered. This is a key point because project that are subsidized but have positive value added merely transfer money between individuals; but projects that have negative value added make everyone poorer (decrease GNP) as well.

<table>
<thead>
<tr>
<th>Costs</th>
<th>Revenues</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost of capital</td>
<td>Profitable Road 1</td>
</tr>
<tr>
<td>Cost of labour</td>
<td>Value added</td>
</tr>
<tr>
<td>Cost of inputs</td>
<td>Loss</td>
</tr>
<tr>
<td>Resource Costs</td>
<td>Profit</td>
</tr>
<tr>
<td></td>
<td>Value added</td>
</tr>
<tr>
<td></td>
<td>Loss</td>
</tr>
<tr>
<td></td>
<td>Value subtracted</td>
</tr>
<tr>
<td></td>
<td>Profitable Road 2</td>
</tr>
<tr>
<td></td>
<td>Profit</td>
</tr>
<tr>
<td></td>
<td>Value added</td>
</tr>
<tr>
<td></td>
<td>Loss</td>
</tr>
<tr>
<td></td>
<td>Value subtracted</td>
</tr>
<tr>
<td></td>
<td>Profitable Road 3</td>
</tr>
<tr>
<td></td>
<td>Profit</td>
</tr>
<tr>
<td></td>
<td>Value added</td>
</tr>
<tr>
<td></td>
<td>Loss</td>
</tr>
<tr>
<td></td>
<td>Value subtracted</td>
</tr>
</tbody>
</table>

Concerning wider economic benefits (WEB), this is an extremely complex matter that has recently begun to be addressed, for instance in an ITF/OECD Joint Transport Research Centre Roundtable 152, 1-2 December 2011. It is not a mature topic but very much a research topic. At this stage, the inclusion of WEB in standard TEN-T evaluations would only obscure matters of evaluation and of comparison across priority projects. There are higher modeling priorities for the proper evaluation of competing projects. Concentrating on improvements in processes dealing with Traffic, Environmental and Climate change dimensions, and on sensitivity analysis and risk management, as stated on p. 13, is much more important than WEB.

WEB should be rather qualitatively and/or quantitatively assessed on a case by case situation, according to the factors not taken into account in the standardized evaluation (new economic activities, reorganization of transport and supply chains, land development, employment, tax impacts...)

194
Definition of Seine-Nord Europe project and Climate assessment

Throughout the study, there is confusion between the Seine-Scheldt cross-border link, the priority project N°30, and the new canal Seine-Nord Europe (one action of the priority project N°30), presented as if they were identical. Seine-Scheldt is the cross-border inland waterway link (350 km) between Conflans(FR) and Ghent(BE), and Seine-Nord Europe is the main bottleneck of the link between Compiègne and Cambrai (106 km long) associated with 4 new multimodal logistic and industrial platforms.

Concerning Seine-Nord Europe, all analyses carried out by VNF distinguish between cost, benefit and return values at European and at French levels (see vol H décembre 2006).

The climate impact assessment for Seine-Nord Europe and Seine-Scheldt is included both in the technical assessment for the impact on water usages on a 100 years return period (see Vol A décembre 2006) and for CO\textsubscript{2} impact (see Vol H décembre 2006) assessing the effect over a 50 years period, taking into account the evolution of the emissions of the 3 modes of transport during this period. This climate effect was specifically taken into account in the design of the project with the inclusion in 2005 of 2 bassin reservoirs.

Financing the priority TEN-T networks

Table 2: Financing the priority TEN-T network, 1996–2013

The table concentrates on the EU financing portion and we suggest that the user contribution should also being considered as a key financing tool for the core network; historically, the main energy and transport infrastructures in Europe and worldwide have been developed considering the benefit for the citizen and the industry. The estimated value of time of cost reduction, and/or "added value of the project" have direct monetary impacts. For Seine Nord Europe the decision by the French government is based on the principle that up to 50% of the generalized cost reduction could be allocated to the toll paid by the users. The remaining 50% is allocated to the modal shift and the competitiveness of the mode.

The TEN-STAC project that analyzed the 30 TEN-T priority projects in 2004-2005

However, all of these models remained under the control of their developers.

The problem is deeper than what is stated. What matters for transparency is not “control” but the public provision of data and model information, preferably in the form of a legal deposit documenting the data and models (perhaps on the SPQR lines proposed by SpotlightsTN).

Take the case of the very important TEN-STAC project, which combines a model for passengers and one for freight: their outputs are merged on the network. Its technical proposal submitted to the European Commission in October 2004 contained basic information on the mathematical form of the passenger model, stating the specifications65, but none on the freight model: nowhere is it stated in the submittal that it is basically derived from a 1986 model66.

In TEN-STAC presentations in Brussels, nobody asked to see the freight demand equations, or for that matter any equation. There was no contractual requirement to “deposit” data and model documentation for ex ante or ex post use.

Leverage effects

In an extended context the secondary effects on the economies stemming from feedback loops between transport and the economy outside the country of investment can be added. Examples are the approaches of IHS (2012), IWW et al. (2005 and 2009), Schada (2005) or Proost et al. (2010). The secondary effects include the repercussions which follow the initial direct effects and can be measured by welfare indicators or indicators of national accounting (GDP, GVA).

It is our considerate opinion that primary project evaluation effects should remain concentrated on the classic partial equilibrium transport demand model process and on complementary environmental and climate impact assessments.

Indirect or leverage effects, and any effects addressed in Spatial Computable General Equilibrium Models, belong, like Wider Economic Benefits, more to the research than to the project evaluation literatures: they still raise enormous issues of uniqueness of solutions (and therefore of reproducibility), and of realism (number of industrial sectors, representation of transport modes, number of endogenous land use prices, etc.), especially if flows, land prices and activity levels are to be modeled across multiple countries.

One would expect such indirect effects to be first modeled adequately within single countries, and the procedures to be readily applied in national transport plans (an objective that is still in the future), before multinational problems are addressed.

Seine-Nord Europe

Timeline – Coordinated planning and implementation

It’s not realistic to say that the projects included in the Seine Scheldt Link have been implemented parallel one to each other.

From November 2005, the Seine Scheldt committee involving France, Flanders, Wallonia and The Netherlands has been created in order to coordinate the different projects. It has been changed into an Intergovernmental Conference in September 2009, gathering the representatives of France, Flanders and Wallonia.

The operational side has been transferred early 2010 to a European Economic Interest Grouping Seine-Scheldt, the competence of which is the coordination for the whole project, for financial issues in particular, communication and consultation. The project is really co-monitored by the three parts since 2005. For project status please refered to comment on conclusion.

Timeline – Cost of the Seine-Nord Europe project

The amount of 5.9 billion €, as per Annex 10 page 171 (the only study table reviewed by VNF) refers to the whole Seine Scheldt priority project and not to the Seine Nord Canal Project. The estimated construction cost (excluding financial costs) for the Seine Nord Canal is 4.3 billion €.

Time-line CBA

It is regrettable that the authors did not question VNF before addressing such a statement on the uncertainty of the CBA and associated forecasts. Clarifications are provided here below. The various 2006 EIRR calculations requested for the documentation of the public enquiry in 2007 aims to give transparency to the public according to the various financing options; in 2007 the EU available financing was less than 10% and can now target 30% or more under

the CEF 2014-2020 program. The range of EIRR lie from 5.2% to 7.8% with a lower central value of 5.3% (scenario de base) and a higher central value 6.6% (Scénario logistique); these 2 values take into account a coefficient (COFP) of 1.3 on public contributions to take into account the budget effect on other projects; the 2012 updates of EIRR taking into account the revised toll system, the results of the consultation with the users and the development of the 4 multimodal platforms, the actual cost estimate during the competitive dialogue and the “lost decade scenario, is 6.0% for the lower central value (Scénario de base).

Transparency of assessment – public availability

VNF, the leading party in the EEIG, has commented on our draft assessment but has failed to supply the relevant documents. In general transparency in terms of public access to relevant documentation is poor.

This statement is totally misleading, both in terms of communication with the authors and in the reality of available documentation:

VNF has never received a draft assessment (VNF only commented and rectified the table C10-01 of page 171) and has never been required to provide specific additional documentation:

During the very short time available for the study (2 weeks from mid-November 2012) VNF has not received specific questions or questionnaire usually prepared for research work and has not met the authors, which founded their conclusions only on documentation found on websites...

The use by the authors of the documentation of a Press conference in November 2010 found on the website is certainly grossly insufficient (or misleading) with respect to the basic principles of project assessment and probably inadequate for the objectives of a research study.

The documentation of the public enquiry in 2007 and all forecasts and studies are fully available since 2006 to the public and were the basis of the application for EU funding in 2007. They are on a website dedicated to the Seine Scheldt project or on request to authorized persons for specific or detailed issues. With regards to French legislation, it is compulsory to make them available and write them in French. More than 1000 comments on the project and positions from the various stakeholders have been provided during the enquiry from January 15th 2007 to March 15th 2007.

The availability of the comprehensive documentation in the French language might explain why the authors of the study are considering that most studies are missing. As it has been difficult to provide them with some relevant documents in English, they were therefore not able to access to the comprehensive information of the project. Nevertheless, some syntheses are partly available in an English version and have been provided to the authors.

Since April 2011, other documents have restricted access status due to the running process of competitive dialogue, which requires confidentiality due to the inputs in the project by the bidders. The authors were not allowed to get this information.

The project is monitored by the EU Commission and the TEN-T EA on a yearly basis since 2005; regular public presentations of the project have been organized with the public, the users and the cofinancers since 2004.
Funding

The financing optimization of the project is a key objective of the process of competitive dialogue, especially at a time where the possibility to increase the various EU support is now open since 2007 (First 2008 EU decision to finance studies and preliminary works). There is planned financing optimization work and no uncertainty up to the time the competitive dialogue is closed and the final bids received. The PPP financing component is mainly covered by the revenues of toll and additional activities (port dues, water transfer, tourism, renewable energies...) which are also part of the actual competitive dialogue. The toll on the canal covered 100% of the running, maintenance and regeneration costs and about 25% of the capital cost.

Conclusions

We suggest to withdraw these conclusions as they seems subjective and not based on scientific or research work, due to the lack of questions sent to VNF and the limited information available to the authors in the 2 weeks time period, using only the communication website.

On that basis, all study conclusions are unfounded:

- The French law is restrictive in the field of environmental and climate impact. Studies are compulsory and have been made for the project.

- Forecasts have been provided and regularly updated with regards to the new economic scenario adopted by the European Union.

- The French government decided to get complementary and updated studies on financial conditions to realize the canal. This is a normal process of the competitive dialogue process and also of the development of the project at the end of the planning phase, before starting the implementation phase to optimize the financing plan. Neither the government nor the candidates have decided to withdraw from participation in the project.

Adequate conclusions for this research study could be drawn when the conclusions of the presents studies of the French government will be available.

In general

In general, it seems favourable that a dedicated project promoter is involved to provide continuous support to the development process of a large project and to improve the assessment of the project interested public at an early stage. However, not all project promoters of today's large projects seem to have learned this lesson, as the limited information available on the Seine-Scheldt waterway has shown.

The assumption from which the Seine Scheldt promoters haven’t provided continuous support is as unfounded as mistaken, as a specific dedicated team has been created in 2003 within Voies navigables de France to develop Seine-Nord Europe, and a specific European body has been created between the European partners in 2005 to coordinate the full Seine-Scheldt link.

There is also no information in the study to back up the assertion that only limited information was available to the authors: no evidence is provided by the authors on this point.

The promoters could have accepted a partial summary view imputable to the very limited time (2 weeks) allocated to the authors of the study and to their difficulties in securing sufficient information and studies in English: these impediments have been sources of deep misunderstandings of the reality of the project.

But the lack of time and available information in English should not prevent the authors from
investigating further in order to get relevant elements and make up their minds: from our perspective, it seems that these elementary assessments haven’t been made and that all conclusions are at this point only founded on personal convictions. If the authors had duly made their own investigations, they would have found the expected elements on the way the promoters are driving the project, on the partnership built with the economic actors, on the update process of forecasts and on studies carried out by meeting the future users, as well as on the permanent dialogue with all stakeholders…

The summary statements made are in total contradiction with the facts and with the development process of the project during the last 9 years (see above comments), which are clearly unknown to the authors due to the lack of time dedicated by them to this project for their study.

These recommendations seems contradictory to the transparency approach of project development and cost assessment and with the required risk reduction approach during the planning phase of a project, and seem insufficient to assess the future of mobility in Europe.

Seine-Nord Europe is one of the large projects in Europe where the development phase was designed since 2004 with a progressive “risk reduction” process; the risk component of the cost of the project was assessed on an analytical and quantified approach in order to identify continuously the mitigation actions during the planning phase to reduce the risks: this is the essence of the planning phase, and not only on environmental issues…

For example:
• the large consultative process from 2004 to 2007 allowed to reduce the risk of recourse during the public enquiry (1 recourse over more than 1000 individual expressions);
• the “independent advising bodies” reduced the risk of inadequate forecasts or design of the project and provided a robust basis for the PPP procedure;
• the anticipated preliminary works (land acquisition, archeological surveys, preliminary works, preparation of various approval procedures,…) reduced the risk of a premium added by the bidders in their cost estimates;
• the consultation of the future users of the canal during the planning phase aims at providing in the outline design of the project the required services for the operation of the transport services on the canal and the inland ports and reduced the risk of late mobilization at the date of opening of the canal.

The estimated cost includes always an element of risk premium, but it should be quantified and regularly reassessed during the planning phase. It is dangerous to fix a ratio as it is difficult to balance between 2 approaches: a high ratio such as 40% which is likely to stop any proper risk evaluation and risk reduction process during the planning phase, or a low risk premium ratio such as 5%, suggested by the authors for specific projects, which is totally unrealistic as it does not consider the risk premium already included in the initial cost estimate. This average ratio of 5% does not reflect the probability range of cost variation of such large projects in Europe and in the world.

The risk reduction approach is fundamental part of the planning phase to secure the date of
time to deliver the project and consequently avoid overrun in time and costs.

Concerning the forecast approach, the ex-post analysis is frequently used, and was largely taken in consideration for Seine-Nord Europe with the benchmark of the development of “Canal Albert” build on industrial grounds in the 1930’s between Antwerpen and Liege, and now developed on a strong logistic basis for European distribution centers (EDC), similarly to the approach of Seine-Scheldt link. However, the development of the multimodal models is crucial to test the sensitivity to different assumptions in terms of cost, tolls, macroeconomic scenarios and multimodal services.

Key issues for the CBA are also the assessment of indirect economic effects on large scale European projects not taken into account in the national and European assessment procedure and not provided by ex-post analysis. Assessment and construction of the future mobility of goods in Europe needs the experience of the past, shared views by the different stakeholders and particularly from the various industries involved for the different type of goods (automotive, cereals and agro-industry, chemical, biomass, energy, construction materials, steel, consumer goods, containers,...) but also anticipation, multimodality and innovation such as building circular economies to reduce the footprint for the available resources.
Appendix 4: References

Policy Department B

Role

The Policy Departments are research units that provide specialised advice to committees, inter-parliamentary delegations and other parliamentary bodies.

Policy Areas

- Agriculture and Rural Development
- Culture and Education
- Fisheries
- Regional Development
- Transport and Tourism

Documents

Visit the European Parliament website:
http://www.europarl.europa.eu/studies