

Progress and prospects of research on the management of high -level radioactive waste: the example of the `transmutation` option

Prof. Dr. Bruno Thomauske

Institue of Nuclear Fuel Cycle

Content

- Nuclear research and teaching in Aachen
- 2. Transmutation
 - Motivation Reduction of High Level Waste (HLW)
 - Political background in Germany Final disposal
 - The AGATE concept
 - The feasibility study
 - AGATE in comparison with MYRRHA
 - Next steps
 - Conclusion

Content

- 1. Nuclear research and teaching in Aachen
- 2. Transmutation
 - Motivation Reduction of High Level Waste (HLW)
 - Political background in Germany Final disposal
 - The AGATE concept
 - The feasibility study
 - AGATE in comparison with MYRRHA
 - Next steps
 - Conclusion

Institute of Nuclear Fuel Cycle (INBK)

- Interdisciplinary research institution
- Since 2008 at the RWTH Aachen University
- Development of innovative, technical solutions for the entire nuclear fuel cycle
- 25 employees in 4 work groups

Institute of reactor safety and reactor technology (Prof. Allelein)

Research focus

Nuclear Supply & Disposal Dr.-Ing. Frank Charlier 6 employees

Transmutation & Characterization of Radioactive Waste Dipl.-Phys. John Kettler 5 employees

Teaching: New master programme

Nuclear Safety Engineering

- Degree: Master of Science
- Type: consecutive master's degree programme
- Study period: 4 semesters (2 years), full time studies
- First enrolment: winter term 2010/2011

Course contents

Focus:

- Nuclear fuel cycle
- Operation and safety of nuclear facilities
- Nuclear physics, nuclear chemistry
- Technologies for waste processing and disposal
- Simulation (High-Performance-Computing)
- Safety analyses
- Radioactive waste management and disposal

Objective: education of highly qualified specialists for the entire nuclear fuel cycle

Content

1. Nuclear research and teaching in Aachen

2. Transmutation

- Motivation Reduction of High Level Waste (HLW)
- Political background in Germany Final disposal
- The AGATE concept
- The feasibility study
- AGATE in comparison with MYRRHA
- Next steps
- Conclusion

Burn-up process of 1000 kg nuclear fuel

- Final Disposal: Long term toxicity of Plutonium and Minor Actinides are a problem
- Different Solutions:
 - Partitioning (reprocessing) and Transmutation (destruction of long lived nuclei)
 - or Direct Disposal of fuel elements in casks

Final Disposal: Thermal power of spent fuel

 The heat load is dominated in the first hundred years by Sr an Cs-Isotopes (Fission products)

Political background in Germany – Final disposal

Waste with negligible heat generation

Konrad 2014/2015

40 - 80 years of

operation

Morsleben 1978 - 1998

Asse 1967 - 1978

High Level Waste with heat generation

Gorleben operation will start in

2035 at the earliest, if

the suitability can

be demonstrated

There is no final disposal for HLW so far!

Comparison of waste management strategies

Principle of Transmutation

Accelerator-Driven System (ADS) = Subcritical reactor system with fast neutron spectrum (Spallation neutron induced fission reaction)

Investigation in P&T

- Project Partners:
 - INBK/RWTH Institute for Nuclear Fuel Cycle Aachen
 - FZJ Research Center Jülich
 - Siemens
 - Fias Frankfurt Institute of Advanced Sciences
- Development of an accelorator driven subcritical gas cooled transmutation experiment (AGATE)
- Targets:
 - compatible with phase-out policy
 - subcriticle system
 - Development of a feasibility study
 - Start: October 2009
 - Termination: February 2011

Feasibility study

Main questions of the study

- Nuclear Fuel
- Accelerator
- Neutron Source (Spallation Target)
- Neutronics and Thermal Hydraulics of an subcritical gascooled reactor
- Benefits of the AGATE concept for the final disposal of High Level Waste

Layout of the undercritical reactor

Design of the reactor core

Neutron flux distribution

Cross section of the reactor core

Advanced Nuclear Systems, International Concepts

ASTRID: Sodium-cooled **fast breeding** reactor (CEA, EDF -

France)

ALLEGRO: European Gas-cooled **fast breeding** reactor (AEKI

Budapest, UJV Rez and VUJE Trnava – Czech

Republic, Hungary and Slovakia)

MYRRHA: Lead-Bismuth-cooled undercritical/fast breeding

reactor, which will also run in an ADS mode

(critical / subcritical system) (SCK●CEN - Belgium)

AGATE: Subcritical gas-cooled accelerator-driven system,

with the main focus on transmutation (RWTH, FZJ,

FIAS, Siemens - Germany)

AGATE in comparison with MYRRHA

AGATE (He / CO₂)

Advantages

- Simplified fuel element handling
- Simplified decontamination in case of a fuel element defect
- Advantages in licensing process because of the experiences with HTR
- Higher flexibility of the spallation target layout
- Exchangeable beam window and spallation target
- Linear neutron source

Disadvantages

- Lower heat capacity of the coolant
- Higher operational pressure

MYRRHA (Lead / Lead-Bismuth)

Advantages

- Higher heat capacity of the coolant
- Lower operational pressure

Disadvantages

- Corrosion of the structural material
- Contamination of the whole coolant in case of a fuel element defect
- Complex handling of the fuel elements
- Activation of the coolant $^{209}\text{Bi} \rightarrow ^{210}\text{Po}$

Next steps

- Decision making process for a German participation in the Myrrha project
- Further development of the gas cooled subritical device AGATE
- Initiation of the decision making process, if P&T should be integrated in the final disposal strategy

Conclusion

- Partitioning and Transmutation contribute if feasible to a reduction of radiotoxicity and thermal power of High Level Waste.
- The subcritical Accelerator-Driven System is appropriate to contribute to the High Level Waste reduction.
- The feasibility study of the AGATE concept will show the technical specifications of a Gas-cooled ADS and its components.
- Research and technical developments are necessary to finally show the technical feasibility of a transmutation device.
- Besides Myrrha AGATE could be a demonstrator facility for a Gas-cooled Fast Reactor.

AGATE – Concept of a demonstrator facility

AGATE – Concept of a demonstrator facility

