Progress and prospects of research on the management of high-level radioactive waste:
the example of the `transmutation` option

Prof. Dr. Bruno Thomauske
Institute of Nuclear Fuel Cycle

ITRE Committee meeting, 1st December 2010
Content

1. Nuclear research and teaching in Aachen

2. Transmutation
 • Motivation – Reduction of High Level Waste (HLW)
 • Political background in Germany – Final disposal
 • The AGATE concept
 • The feasibility study
 • AGATE in comparison with MYRRHA
 • Next steps
 • Conclusion
Content

1. Nuclear research and teaching in Aachen

2. Transmutation
 - Motivation – Reduction of High Level Waste (HLW)
 - Political background in Germany – Final disposal
 - The AGATE concept
 - The feasibility study
 - AGATE in comparison with MYRRHA
 - Next steps
 - Conclusion
Institute of Nuclear Fuel Cycle (INBK)

- Interdisciplinary research institution
- Since 2008 at the RWTH Aachen University
- Development of innovative, technical solutions for the entire nuclear fuel cycle
- 25 employees in 4 work groups

Institute of reactor safety and reactor technology (Prof. Allelein)
Research focus

Nuclear Supply & Disposal
Dr.-Ing. Frank Charlier
6 employees

Transmutation & Characterization of Radioactive Waste
Dipl.-Phys. John Kettler
5 employees

Nuclear Simulation
Prof. Dr. rer. nat. Rahim Nabbi
7 employees

Communication & Public Relations
Sabine Backus, M. A.
5 employees
Teaching: New master programme

Nuclear Safety Engineering

- Degree: Master of Science
- Type: consecutive master’s degree programme
- Study period: 4 semesters (2 years), full time studies
- First enrolment: winter term 2010/2011
Course contents

Focus:

- Nuclear fuel cycle
- Operation and safety of nuclear facilities
- Nuclear physics, nuclear chemistry
- Technologies for waste processing and disposal
- Simulation (High-Performance-Computing)
- Safety analyses
- Radioactive waste management and disposal

Objective: education of highly qualified specialists for the entire nuclear fuel cycle
Content

1. Nuclear research and teaching in Aachen

2. Transmutation
 - Motivation – Reduction of High Level Waste (HLW)
 - Political background in Germany – Final disposal
 - The AGATE concept
 - The feasibility study
 - AGATE in comparison with MYRRHA
 - Next steps
 - Conclusion
Burn-up process of 1000 kg nuclear fuel

- Final Disposal: Long term toxicity of Plutonium and Minor Actinides are a problem
- Different Solutions:
 - Partitioning (reprocessing) and Transmutation (destruction of long lived nuclei)
 - or Direct Disposal of fuel elements in casks
Final Disposal: Thermal power of spent fuel

- The heat load is dominated in the first hundred years by Sr an Cs-Isotopes (Fission products)
Political background in Germany – Final disposal

Waste with negligible heat generation
- **Konrad**: 2014/2015, 40 - 80 years of operation
- **Morsleben**: 1978 - 1998
- **Asse**: 1967 - 1978

High Level Waste with heat generation
- **Gorleben**: Operation will start in 2035 at the earliest, if the suitability can be demonstrated

- There is no final disposal for HLW so far!
Comparison of waste management strategies

Actinides (Spent Fuel)

Actinides after reprocessing (U,Pu)

Actinides after P&T
Principle of Transmutation

Accelerator-Driven System (ADS) = Subcritical reactor system with fast neutron spectrum (Spallation neutron induced fission reaction)
Investigation in P&T

- **Project Partners:**
 - INBK/RWTH - Institute for Nuclear Fuel Cycle Aachen
 - FZJ - Research Center Jülich
 - Siemens
 - Fias - Frankfurt Institute of Advanced Sciences

- **Development of an accelerator driven subcritical gas cooled transmutation experiment (AGATE)**

- **Targets:**
 - compatible with phase-out policy
 - subcritical system
 - Development of a feasibility study
 - Start: October 2009
 - Termination: February 2011
Feasibility study
Main questions of the study

- Nuclear Fuel
- Accelerator
- Neutron Source (Spallation Target)
- Neutronics and Thermal Hydraulics of an subcritical gas-cooled reactor
- Benefits of the AGATE concept for the final disposal of High Level Waste
Layout of the undercritical reactor

Design of the reactor core

Neutron flux distribution

Cross section of the reactor core
Advanced Nuclear Systems, International Concepts

ASTRID: Sodium-cooled fast breeding reactor (CEA, EDF - France)

ALLEGRO: European Gas-cooled fast breeding reactor (AEKI Budapest, UJV Rez and VUJE Trnava – Czech Republic, Hungary and Slovakia)

MYRRHA: Lead-Bismuth-cooled undercritical/fast breeding reactor, which will also run in an ADS mode (critical / subcritical system) (SCK•CEN - Belgium)

AGATE: Subcritical gas-cooled accelerator-driven system, with the main focus on transmutation (RWTH, FZJ, FIAS, Siemens - Germany)
AGATE in comparison with MYRRHA

<table>
<thead>
<tr>
<th>AGATE (He / CO₂)</th>
<th>MYRRHA (Lead / Lead-Bismuth)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advantages</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Simplified fuel element handling</td>
</tr>
<tr>
<td></td>
<td>Simplified decontamination in case of a fuel element defect</td>
</tr>
<tr>
<td></td>
<td>Advantages in licensing process because of the experiences with HTR</td>
</tr>
<tr>
<td></td>
<td>Higher flexibility of the spallation target layout</td>
</tr>
<tr>
<td></td>
<td>Exchangeable beam window and spallation target</td>
</tr>
<tr>
<td></td>
<td>Linear neutron source</td>
</tr>
<tr>
<td>Disadvantages</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lower heat capacity of the coolant</td>
</tr>
<tr>
<td></td>
<td>Higher operational pressure</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Advantages</td>
<td>Higher heat capacity of the coolant</td>
</tr>
<tr>
<td></td>
<td>Lower operational pressure</td>
</tr>
<tr>
<td>Disadvantages</td>
<td>Corrosion of the structural material</td>
</tr>
<tr>
<td></td>
<td>Contamination of the whole coolant in case of a fuel element defect</td>
</tr>
<tr>
<td></td>
<td>Complex handling of the fuel elements</td>
</tr>
<tr>
<td></td>
<td>Activation of the coolant $^{209}\text{Bi} \rightarrow ^{210}\text{Po}$</td>
</tr>
</tbody>
</table>
Next steps

- Decision making process for a German participation in the Myrrha project
- Further development of the gas cooled subcritical device AGATE
- Initiation of the decision making process, if P&T should be integrated in the final disposal strategy
Conclusion

- Partitioning and Transmutation contribute if feasible to a reduction of radiotoxicity and thermal power of High Level Waste.

- The subcritical Accelerator-Driven System is appropriate to contribute to the High Level Waste reduction.

- The feasibility study of the AGATE concept will show the technical specifications of a Gas-cooled ADS and its components.

- Research and technical developments are necessary to finally show the technical feasibility of a transmutation device.

- Besides Myrrha AGATE could be a demonstrator facility for a Gas-cooled Fast Reactor.
AGATE – Concept of a demonstrator facility

Thank you for your attention
AGATE – Concept of a demonstrator facility