

Possible role, potential and barriers in the EU electricity system

The world is changing

Europe:

LESS PRIMARY
ENERGY USE vs. BAU*

By the year

2030

*Business As Usual

The world is changing

Europe:

27%

MORE RENEWABLE ENERGY USE

LESS PRIMARY ENERGY USE vs. BAU*

By the year

2030

*Business As Usual

System with limited flexibility options

Demand Respond A characterization

- From a high-level perspective,
 - DR could be understood as the change in electric usage patterns of end-users by means of price signals or incentive payments
- DR could optimize the use of the power system
 - It is more than "just load reduction"

Demand Respond

A characterization

- Readily available flexibility
 - * Each consumption device (e.g. home appliance) is a (potential) source of flexibility
- Fast acting and scalable
 - Immediate way to increase flexibility
 - For system operators
 - For commercial players
- Groups

Dupont, 2015

Possible role

- In the flexibility realm
 - * Resource provider Enhancing system reliability and adequacy
 - Energy
 - Capacity
 - Ancillary services
 - Facilitator of a decarbonized power system
- In the technological realm
 - Innovation catalyzer
 - Metering / Automation (control) / Communication
 - Storage
 - Consumption behaviors (new ways to consume)
- In the market realm
 - Competition enhancer
 - Facilitator for better price formation

Possible role

- Provider of flexibility-based solutions
 - Across wholesale and balancing markets
- Innovation catalyzer
- Promoter of competition

Art. 15 from the European Commission Energy Efficiency Directive (2012/27/EU):

- Encourage DR participation in wholesale and retail markets
- Promote access and participation of DR in system services markets
- No discrimination to DR providers (aggr.) by system operators

Demand Response **Possible sources**

"Flexibility can be found in a broad range of appliances and different kinds of customers."

residential

- hot tap water boiler
- washing machine
- tumble dryer
- dish washer
- air-conditioning
- heat pump
- charging EV

SME & buildings

- air-conditioning
- ventilation
- heat pump
- cold storage
- compressors
- pumps
- ..

large industry

- steel industry
- electrolysis
- compressors
- pumps
- paper industry
- ..

flexibility at residential customers

flexibility at large industry

Potential

_J

- ➤ Values of more than 900 kW/Km²
 - † Paris, Inner London, Ludwigshafen am Rhein
- **►** Low densities
 - North-eastern Germany, Scotland, northern Finland, ...

Market parties

- Cost savings
 - Investment and operation (power plants)
- Market revenues
- * Renewable energy integration

System operators

- Maintain grid security
- Operating reserves
 - System balancing
 - Congestion resolution

Consumers

- Reduce investment costs
 - peak generation
- Security of supply
 - Cost-efficient

Potential business models for DR in 6 Member States

Business model		BE	FR	DE	ΙΤ	ES	UK
Standard contract optimization	Commodity	•	•	•	•	•	•
	Network charges	•	•	•	•	•	•
Day-ahead optimization	Commodity	•	•	•	•	•	•
	Network charges	•	•	•	•	•	•
Reserve capacity	FC reserve	•	•	•	•	•	•
	FR reserve	•	•	•	•	•	•
	R reserve	•	•	•	•	•	•
Imbalance optimization		•	•	•	•	•	•
On-site VRE optimization		•	•	•	•	•	•

- business case is viable in exisiting regulatory framework
- business case limited viability/restricted in current regulatory framework
- business case impossible in existing regulatory framework

Potential to optimize the use of the power system

Maintaining the balance between demand and supply

- ♠ In a 2011 study ordered by the FERC (USA)
 - The vast majority of peak reduction potential will come from incentive-based demand respond (92%)
- However, in the long run the introduction of "smart" technologies may tilt the balance towards price-based DR

Better wholesale market price formation

- Increases market efficiency
 - Flexible enough to substitute or complement services provided by other technologies (e.g. pumped storage)

Improved supply of system services

- Enhances system reliability
 - Fast enough to cope with sudden imbalances (short-term)

Lower investment in capacity

- Cheapest flexibility option
 - In comparison with other capital intensive options (flexible generation, storage, enhanced interconnections)

Challenges

- Adequate remuneration
 - Need of price spreads in the market that makes DR profitable
 - Rather than occasional price spreads that do not allow for building a flexible tariff optimization model
 - Need of adequate peak pricing and/or rebate program
 - Peak periods: suitable announcement lead time and duration
- Requirements for participation
 - ★ E.g. frequency of procurement, resource availability, event duration, ...
- Measurement and verification protocols to ensure a fair payment for DR services
 - * E.g. standardized baseline mechanism
- Clarification of relationships
 - E.g. between BRP and aggregator

Demand Response Challenges in practice

Participation in balancing reserves

- Product
 - Originating from the design of regulatory framework, market, product which focus on the characteristics of generators
 - Bid (minimum) size
 - Timing requirements: product duration & minimum run/down times
 - Symmetry
- **Economic**
 - Financial (dis)incentives
 - Incentives are to low or not existing
 - Fear to increase in bill due to high peak demand usage
 - High penalties for non-compliance
- **Technical**
 - Special requirements for the system or consumers (focus on generation specifics)
 - Lack of infrastructure: no smart meter = no time-varying prices
 - Network and scheduling constraints
- Consumer
 - Lack of awareness and policy restrictions
 - Low awareness and understanding of DR programs
 - Low willingness to react to signals (prices or incentives) due to inelasticity of demand
 - No freedom to design rates (retail)
 - Wholesale prices are more variable than retail market prices

The take away

- DR may play a central role in the evolution of the power system
 - ★ As resource provider
 - * As innovation catalyzer
 - As competition enhancer
- DR has the potential to reshape the electricity business
 - especially at distribution system level
 - A However, the value of this source of flexibility should be reflected by the financial incentives and price signals delivered to the consumer
- Participation of DR
 - ★ System adequacy and balancing seems to be more interesting for DR
 - Wholesale has still low participation
- Main source of barriers for the deployment of DR
 - ★ Design of the regulatory framework, markets and products
 - It is important to take into account these barriers when deciding on the scope and characteristics of any reform (e.g. IEM − market harmonization)

The take away

To continue the deployment of DR it is needed to

- Promote a "flexibility friendly" legislation
 - **E.g.** Providing consumers with access to infrastructure (smart meters) and schemes (dynamic pricing)
- ★ Support an standardized framework
- Give guidelines to assess system flexibility needs and DR flexibility value
 - ▲ E.g. Promoting robust CBAs
 - E.g. Taking into account expected potential and related cost (e.g. methods, incentives and technologies to measure and promote changes in consumer's behavior
- Increase consumer's awareness
 - E.g. Simplifying the message and enhancing the protection
- Mitigate market and regulatory distortions
 - **E.g.** Considering solutions for DR barriers in the design of the regulatory framework, markets and products

Questions?

ronnie.belmans@energyville.be

Daan.six@energyville.be

enrique.riveropuente@energyville.be

