

Best practices in Member States to reach the renewable energy and energy efficiency targets

Dolf Gielen

Director, Innovation and Technology ITRE workshop Brussels 22 February

RE & EE Synergies – the cornerstones of energy

transition

Source: IRENA, 2017

 Renewables would account for half of total emission reductions in 2050, with another 45% coming from increased energy efficiency and electrification with renewables.

RE & EE – A need for global action

- Renewable energy would make up two-thirds of the energy mix by 2050 in REmap case, up from just one-quarter in Reference Case
- This requires an increase in the renewables' share of 1.4% per year, a seven-fold acceleration
- TPES would decrease from over 700 EJ to around today's level the result of both energy efficiency and RE power/electrification
- GDP nearly triples and energy use is flat intensity improvement
 2.6%/yr a doubling

Source: IRENA, 2017

Renewable Energy Prospects for the European Union

- Assess the aggregated impact of national renewable energy plans
- Assess the role of renewables in long-term decarbonisation

Insights

- Doubling the RE share is feasible between now and 2030 to 34% RE share
- This is cost neutral
- RE technology improvements in recent years are the driver for greater potential
- Accelerating renewable deployment will be key for Europe to be in line with Paris Agreement
- Substantial economic and social benefits

The EU can double its current share of renewables by 2030 cost effectively

Strong cost savings

- · Wind power
- · Solar power
- Solar thermal in buildings
- · Hydro power
- · Geothermal power

Moderate cost savings

- Heat pumps
- Electric vehicles
- Biodiesel
- Geothermal district heating
- · Solar thermal in industry

Additional cost

- Biomass in industry
- · Conventional bioethanol
- Biomass in power and district heat
- Advanced bioethanol
- Biokerosene

Higher energy efficiency gains result in higher RE shares for the same amount of renewable energy

% REmap Options Implemented

_
உ
_
٠ <u>٠</u>
()
_
_
1111
60
_
41
_
_
_

	0%	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
Reference Case	24%	-	-	-	-	-	-	-	-	-	
IRENA REmap Case		26%	27%	27%	28%	29%	30%	30%	31%	32%	33%
27%	25%	26%	27%	28%	28%	29%	30%	31%	31%	32%	33%
28%	26%	26%	27%	28%	29%	30%	30%	31%	32%	33%	33%
29%	26%	27%	28%	28%	29%	30%	31%	32%	32%	33%	3 ¥ %
30%	26%	27%	28%	29%	30%	30%	31%	32%	33%	34%	34%
31%	27%	28%	28%	29%	30%	31%	32%	32%	33%	34%	35%
32%	27%	28%	29%	30%	30%	31%	32%	33%	34%	35%	35%
33%	27%	28%	29%	30%	31%	32%	33%	33%	34%	35%	36%
34%	28%	29%	30%	30%	31%	32%	33%	34%	35%	36%	_3 ½ %
35%	Z8 %	29%	30%	31%	32%	33%	34%	34%	35%	36%	37%

Energy Efficiency gains result in higher RE shares Example Germany

	Base year 2010	Reference Case 2030	EE 2030	REmap 2030	REmap +EE 2030	TECH 2030
Renewable energy share (% of TFEC)	10.4	25.9	27.7	35.6	38.4	43.7
Annual rate of energy intensity improvement 2010–30 (%/yr)	1.8 (1990-10) ^a	2.6	3.0	2.8	3.2	3.4

- Germany:
 - RE results in increase in annual El improvement from 2.8% to 3.2%
 - EE results in increase in RE share from around 35.6% to 38.4%
- Similar effects seen in China, India, Japan and USA with on average a 10-15% increase in RE share resulting from increased EE

Renewable Energy contributes to Energy Efficiency

improvement

- Energy intensity improvements need to increase to 2.5% per year by 2030 and continue around this level until 2050.
- One-quarter of EI improvement is the result of RE technologies

Practical examples of EE and RE synergies

- Solar, wind, hydropower, marine efficiency gain factor 1.5-3 compared to conventional fossil and nuclear power generation
- Sector coupling offers efficiency opportunities
 - Electromobility and renewable power efficiency gain factor 2-3 compared to gasoline/diesel ICE
 - Heat pumps and renewable power efficiency gain factor 2-4 compared to condensing gas boiler
- Not all renewables result in efficiency gains, statistical definitions play an important role and don't make a difference in real life

THANK YOU

www.irena.org

