

pedro.madureira@immunethep.com 29th March 2023

Bruno Santos Œ (M.Eng. MBA) Bioengineering. Quality, Innovation and Management

CSO(PhD Immunology) factors causing

Pedro Madureira

Fric Leire Chairman (MD, MBA) Expertise on virulence Former CEO of infectious disease companies. Infectious Diseases Experience in clinical trials.

Patrícia Costa PV Representative (PhD) Investor Life Sciences Former researcher on oncology, genetics

Donald Gerson **Pusiness Advisor** (MD, PhD) Founder, CEO of PNUVAX biopharma production (including vaccines)

Immunethep Board

António Coutinho Scientific Advisor (M.D. PhD) Renowned immunologist and academic

Margrit Schwarz **Business Advisor** (PhD, MBA) Senior executive in pharma (Roche, Boerhinger, Amgen)

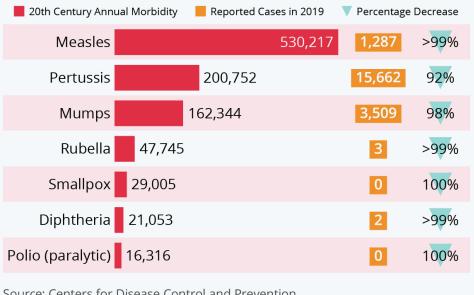
Marta Vieira Head of Research (PhD) Animal studies of infectious disease and analytical techniques

Pedro Castanheira Head of Protein Science (PhD) Protein and antibodies characterization and production

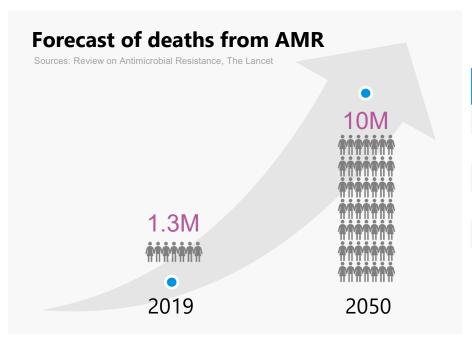
Carla Teixeira Senior Researcher (PhD) Cell culture for infectious disease models.

(MJEng, MBA) Venture Capital. Management, Business Development,

Schnical Advisors


Roberto Pinto Clinical Affairs (MD, MSc) Cardiologist, Experience in Clinical Trials

Fernando Mota Regulatory Affairs (PharmaD, MSc, MBA) Experience in Clinical Trials from Phase 1 to 3

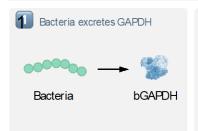

How Vaccines Eradicated **Common Diseases**

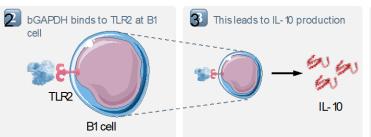
Annual 20th century morbidity and 2019 morbidity of selected diseases in the U.S.

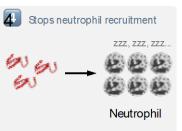
Source: Centers for Disease Control and Prevention

Antimicrobial Resistance (AMR)

Bacteria	Antibiotic Resistance	CDC Hazard	Vaccine available
Escherichia coli	Significant	Urgent	No
Klebsiella pneumoniae	Significant	Urgent	No
Staphylococcus aureus (MRSA)	Significant	Serious	No
Streptococcus pneumoniae	Significant	Serious	Yes (partial) *
Streptococcus agalactiae**	Moderate		No

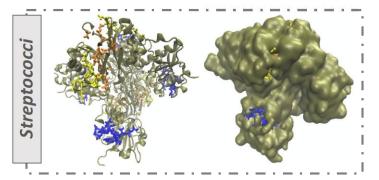

^{*} Limited serotype protection (Prevnar - 13, Pneumovax - 23, Synflorix - 10)

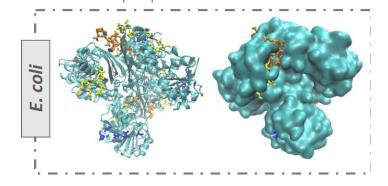

^{**} Also known as GBS (low incidence / high severity)

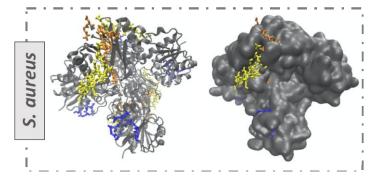

Virulence Mechanism

Bacteria use extracellular GAPDH to inhibit host immune response

Without PNV: Bacteria uses extracellular GAPDH to inhibit host Immune response







GAPDH as a target

Selection of peptides absent from human GAPDH

Criteria for peptide selection


- Surface exposed bGAPDH peptides;
- Not present in human GAPDH;
- Peptide size from 8 to 20 amino-acids
- Conjugated to large carrier protein (KLH)

Preventive Immunotherapy Efficacy in mice

PNV successfully concluded animal trials and is ready for Human Clinical Trials

Survival Rate with PNV (cPNV4)

Vieira et al. Unpublished Data

Preventive Immunotherapy

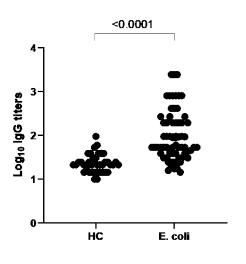
Development Pipeline: PNV vs Market

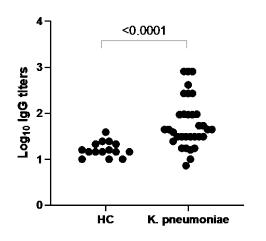
		Preclinical	Pha	ise I	Phase II	Phase III	Market available
	Streptococcus pneumoniae			PATH CDC	Affinivax NSTITUTO BUTANTAN	Pfizer* MERCK**	Pizer \$5.9B PREVNAR revenue 2020 MERCK PNEUMOVAX revenue SYNFLORIX 2020
20000	Staphylococcus aureus				FAST TRACK	ABI SD	NO Available Vaccines
-0000	Klebsiella pneumoniae						NO Available Vaccines
	Escherichia coli		S Lin	nmal ech	Janssen 🗡		NO Available Vaccines
Million GCOGG	Streptococcus agalactiae			NIH	MINERVAX		NO Available Vaccines

PNV has the potential to become the 1st vaccine in the world effective against all serotypes of these 5 deadly bacteria

^{* 20} serotypes

^{** 15} serotypes

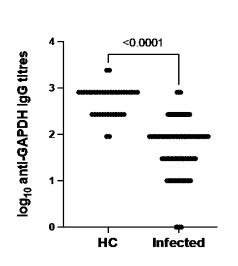


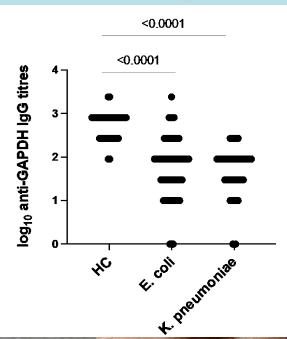

Anti-GAPDH IgG in infected patients

Normalized Titers

Infected samples show high titers of IgG specific to bacterial surface

- Isopropanol-fixed bacteria or recombiant S. aureus isdA were used for ELISA plate coating


125 individuals with proven bacterial infection

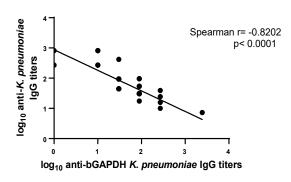

- E. coli. 90 individuals
- *K. pneumoniae*. 35 individuals

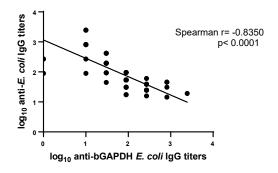
80 Healthy Controls (HC)

Anti-GAPDH IgG in infected patients

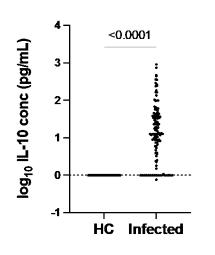
Individuals with proven bacterial infection had significantly lower plasma anti-GAPDH IgG titers when compared with healthy controls

125 individuals with proven bacterial infection

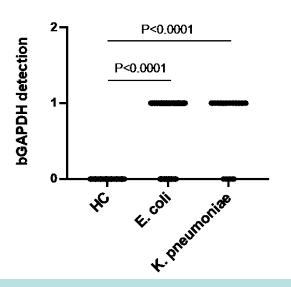

- E. coli. 90 individuals
- *K. pneumoniae*. 35 individuals


80 Healthy Controls (HC)

Anti-GAPDH IgG in infected patients


Normalized Titers

Infected samples show high titers of IgG specific to bacterial surface
- Isopropanol-fixed bacteria or recombiant S. aureus isdA were used for ELISA plate coating

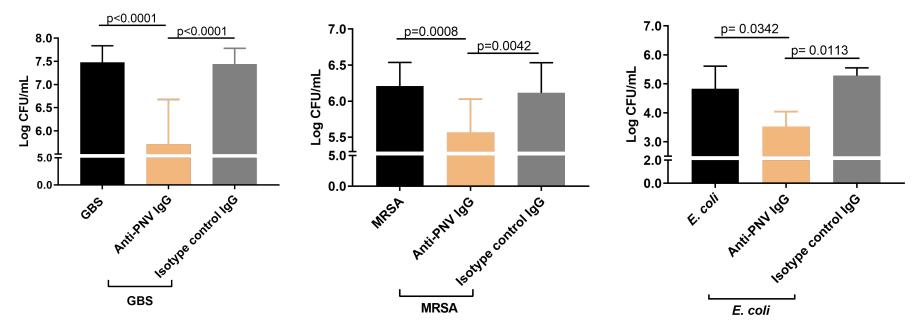

IL-10 concentration in infected patients

- Individuals with proven bacterial infection had significantly higher IL-10 concentration in the blood when compared with healthy controls.
- No IL-10 was detected in the blood of healthy controls.

Detection of bGAPDH in infected patients

	% GAPDH*
НС	0
E. coli	69
K. pneumoniae	75

Bacterial GAPDH can be detected in the blood of 70% of the infected individuals


The presence of bacterial GAPDH in the plasma of infected patients and healthy controls was performed by ELISA and confirmed (double-checked) by Mass-Spec.

- All the plasma samples were centrifuged (10,000g) and filtered (0,2 µm) to exclude the presence of bacteria

^{*} Percentage of samples where GAPDH was detected

Preventive Immunotherapy

Anti-bGAPDH Antibodies reduce bacteremia in human cells

Purified anti-cPNV4 IgG reduces bacteremia in cord-blood

Total cord-blood cells were plated in 24-well plate (10⁷ cells/well). *S. aureus, E. coli or S. agalactiae* cells were added at a multiplicity of infection (nº cord-blood cells/nº bacteria cells) of 1 in the presence of 200 μg of purified anti-cPNV4 lgG or anti-KLH lgG (isotype control). Cell cultures were incubated for 3h at 37°C with gentle shaking. At the end of the incubation period, bacterial CFU were quantified in the supernatants. Graphics represent data from at least 11 independent experiments with cells from 40 different donors. Cord-blood was obtained from Coimbra University Hospital upon informed consent.

Our Immune system has a unique ability to "sense danger"

pedro.madureira@immunethep.com