European Parliament Committee on industry, research and energy

December 1st, 2010

Public Hearing on "Management of radioactive waste"

Detlef Appel, PanGeo - Geowissenschaftliches Büro, Hannover:

Considerations on deep geological disposal

Considerations on deep geological disposal

Contents

- Why geological disposal advantages / disadvantages ?
- Siting processes experiences
- Expectations of the public
- Consequences for site selection processes
- Suitability features of repository systems
- Example AkEnd site selection process
- Résumé regarding the relationship between technical and non-technical aspects

Why geological disposal - advantages

- distance between waste and biosphere
- capacity of geological barriers to confine / retain radionuclides / other harmfull substances transported by water / gas
- geological barriers provide passive safety (maintenance and repair not necessary - however: must be confirmed for selected site)
- status of passive safety reached within "short" time span (as compared to the isolation time needed)
- (long-term) function and stability of safety relevant properties of geological barriers at a given site can be demonstrated by use of nature oberservations (indicators)
- low costs
- ⇒ early concentration on (deep) geological disposal of HAW / SF

Why geological disposal - disadvantages

Due to the long time span to be considered:

- long-term monitoring impossible / limited
- long-term maintenance and repair impossible
- **not sustainable** (particularly SF)
- correctness of long-term safety demonstration cannot be verified in terms of natural science / mathematics: predictions of future development of the disposal system, particularly of barrier behaviour, show uncertainties (incomplete acquisition and evaluation of system properties, deficiencies in process understanding, prognostic uncertainties, ...)
- wrong site decision (if identified at all) cannot be corrected after waste emplacement / closure ("irreversible")
- ⇒ reduce uncertainties! "robust" disposal system!
- ⇒ public resistance against final disposal / siting of disposal repositories
- ⇒ request for alternatives with "active guarantee of safety" / retrievability of waste / reversibility of decisions and measures

Siting processes - experiences (1)

during late 1950ies and 1960ies

- final disposal in deep geological formations becoming the most accepted waste management strategy for radioactive waste, particularly HAW
- some countries intend to dispose off all types of radioactive waste in deep geological formations (e.g. Germany, Switzerland), others only HAW

late 1970ies / 1980ies

- planning / start of **national siting programmes** for repositories (HAW, all types of waste) e.g. France, Germany, Sweden, Switzerland, USA
 - in some countries **delays**, **even failure of site selection processes** due to increasing resistance of (parts of) the public against pure technical siting approaches
 - ⇒ increasing interest of the public / stakeholders / concerned persons in final disposal / siting regarding societal and ethical questions and results of political / administrative decision making (not only radioactive waste management)

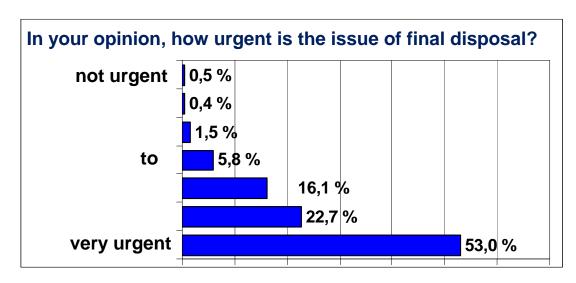
Siting processes - experiences (2)

1980ies ctd.

- societal and ethical aspects of radioactive waste management intruding into the national and international debates about waste management, particularly siting of deep geological disposal facilities: sustainability / equity / intra- and intergenerationale justice...
 - ⇒ procedural and technical key-words: **transparency**, **participation**, **fairness**, **rules**, **retrievability** of waste / reversibility of measures and installations...

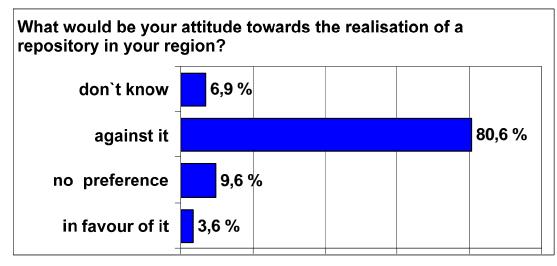
1990ies

- in several countries **restart of public debate** about national waste management strategy / disposal concept (e.g. France, Sweden, Switzerland)
- discussion / investigation of **alternatives / modifications of "pure" final disposal** (e.g. partitioning and transmutation P & T, retrivability of waste, reversibility of measures and installations, long-term storage of waste)
- attempts to improve public participation in decision making


Siting processes - experiences (3)

(late) 1990ies and 2000s

- re-design / modification of waste management strategies, particularly disposal concepts (Sweden: demonstration phase / France: retrievability / Switzerland: "geological deep disposal" with testing and limited retrievability, UK: debate starting from scratch)
- start of new siting programmes / re-start of modified programmes including public participation / stakeholders discourse
- international organizations discuss ethical aspects of waste management and its consequences for decision making processes (e.g. participation of stakeholders on national / regional / local levels), e.g.:
 - ⇒ OECD/NEA (Forum on Stakeholder Confidence)
 - ⇒ international research projects on stakeholder participation, e.g. Euratom Project Community Waste Management COWAM (2000 2009)


Expectations of the public -

Final disposal in the view of the public (2002)

Example Germany:

Attitude of the German public towards final disposal - indicator of a dilemma between safety and public risk perception?

from:

AKEND - Committee on Site Selection Procedure (2002): Site Selection Procedure for Repository Sites - Recommendations of the AkEnd

Expectations of the public -

Expectations of stakeholders regarding EU "disposal policy" (2010)

Principles and requirements of RWM policy as asked for during public consultation:

protect future generations from the dangers of ionising radiation						
implement transparency arrangements	64,5%					
independence of the regulatory authority	64,3%					
"polluters pay" principle	59,4%					
actively involve the public in the decision-making process	59,2 %					
necessary legal, human and financial resources for the regulatory authority	54,7%					
7 more fundamental principles and requirements with 54,5 - 43,9 %						
establishment and implementation of quality assurance programmes	41,2%					
foresee geological disposal as the endpoint for HAW / SF						
dedicated organisation at national level for the RWM	33,5%					
Other	7,6%					
None of the above	1,8%					
No opinion	1,2%					

from: Accompanying document to the revised proposal for a council directive..., impact assessment. 3.11.2010)

Expectations of the public -

Expectations of stakeholders regarding decision making processes

17 Recommendations of COWAM 2 (Euratom "Community Waste Management")

Α	Define goals	J	Define roles and responsibilities		
В	Always provide alternatives	K	Ensure early and inclusive participation		
С	Ensure weighing and balancing of values and interests	L	Establish control of the process		
D	Be comprehensive (technical / societal)	М	Adapt formats to tasks		
Е	Proceed stepwise	Z	Allocate adequate resources		
F	Ensure flexibility	0	Ensure continuity of structure and awareness		
G	Be transparent and open	А	Secure influence of participants		
Н	Allow sufficient time	Q	Enhance well-being		
	Stick to the "rules of the game"				
fro	from: COWAM 2 WP 3 final report (2007)				

European Parliament - ITRE Committee: Hearing "Management of Radioactive Waste", Brussels, 1 December 2010 Detlef Appel: "Considerations on deep geological disposal"

Consequences for site selection processes

today

- discussion and (in case of advantages regarding safety or / and acceptance)
 implementation of modifications of "pure" final disposal or even alternatives to it
- consideration of ethical and societal aspects (particularly: equity, fairness, sustainability) and their consequences for decision making
- participation of concerned persons / stakeholders / the public in decision making processes on different levels (national, regional, local)
- procedural rules and transparancy
- appreciation of burden to regional / local people hosting a (future) disposal facility
- not only compensation of disadvantages, but assistance for regional development

are inevitable attributes of decision making in radioactive waste management ment (particularly site selection for geological disposal facilities)

⇒ decision making = socio-technical issue

Suitability features of repository systems (1)

- integrity and functional efficiency of the barriers for the time span required
- "predictable" repository system
- **robustness** of the disposal system (non-sensitive against internal and external influences and failures)
- robustness of the results of the final safety analysis against deviations of unforeseen reality from input assumptions
- ⇒ favourable overall geological setting

However:

- integrity and functional efficiency of barriers and robustness of repository systems are no apparent / measurable properties but have to be derived from (geo-scientific) properties of the respective system
- all "generally suitable" types of host-rock (e.g.: rock-salt, argillaceous rocks, crystalline rocks, paticularly granite) exhibit rock-specific advantages and disadvantages and
- all forms of appearance of of host-rock types and all potential repository sites with these rocks exhibit form- and site-specific advantages and disadvantages

Suitability features of repository systems (2)

- no ideal waste management strategy and no ideal repository site!
 - ⇒ inevitable to **compare** all relevant strategic options and all potential sites with respect to their pros and cons to identify the **relatively best strategic option** and the **relatively best repository site** resp.
- this weighing process is an inevitable pre-condition for a methodically appropriate and safety-technically successfull DMP, it is the key element of all systematic site selection procedures such a weighing process requires at least
 - a **common understandig** of the safety requirements defining the goal of the decision making process
 - rules for content and course of the decision making process
 - appropriate instruments (criteria) for the identification and comparison of potentially feasible sites / repository systems as well as for the assessment of the results of site investigations
 - qualitatively and quantitatively sufficient information for the upcoming decision
 ⇒ no site decision without site investigation!

Example AkEnd site selection process -

Scientific and technical approach (1)

Principles (fair, equitable, ...) and their procedural consequences

- safety first
- "best possible" site (result of a weighing process between alternatives, not the absolutely best site!)
- rules of the process to be specified prior to application (criteria, weighing, consequences of assessments
- transparent (stepwise) procedure
- covering all relevant aspects (safety, societal, ethics...)
- no spatial preselection ("white map of Germany")
- scientifically based criteria
- independend control of siting process
- scientific discussion during development
- public participation during development and implementation
- ...

Example AkEnd site selection process -

Scientific and technical approach (2)

Methodological main features

- 5 steps
- guided by geoscientific and socio-scientific criteria
- volunteerness
- flexible (step backwards), to allow response to new findings
- uncertainties to be reduced / show consequences of remaining uncertainties

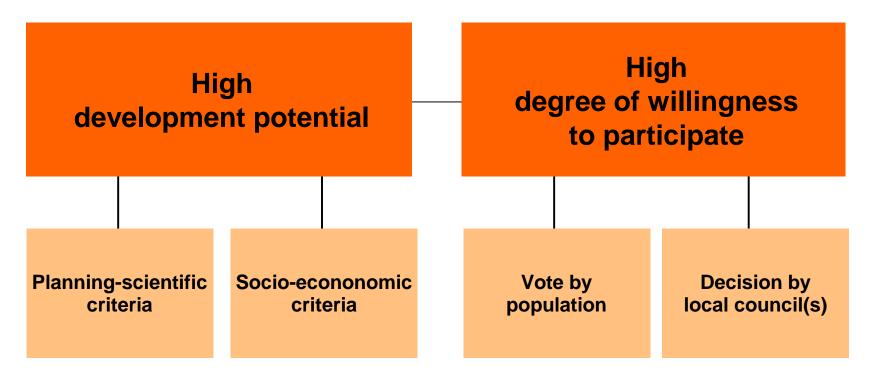
Example AkEnd site selection process - Procedure (1)

Procedure Steps	Proceeding, Criteria, Assessments		
1st Step Identification of areas fulfilling specific minimum requirements	Geoscientific exclusion criteria and mini- mum requirements		
2 nd Step Selection of partial areas with particularly favourable geological conditions	Geoscientific weighing criteria		
3 rd Step Identification and selection of site regions for exploration from the surface	 Planning-scientific exclusion criteria Planning-scientific weighing criteria Socio-economic potential analysis Specification of programmes for exploration 		
Step backwards, if required	from the surface and corresponding assessment criteria • Willingness to participate regarding exploration from the surface • Geoscientific and mining aspects		
4 th and 5 th Step			

Example AkEnd site selection process - Procedure (2)

Procedure Steps	Proceeding, Criteria, Assessments			
3 rd Step				
4th Step Determination of sites for underground exploration Step backwards, if required	 Exploration from the surface Orienting safety assessment Development of test criteria Willingness to participate regarding underground exploration programmes 			
5th Step Decision on a site Step backwards, if required	 Underground exploration and its assessment Safety case Comparison of the different sites explored Orienting vote about willingness to accept underground exploration 			
Repository site for licensing procedure				

Example AkEnd site selection process -


Instruments for participation

Procedure Steps	Instruments of participation		
1st Step areas			
2 nd Step partial areas	Information and control:		
3 rd Step site regions	 Establishment of an information 	 Citizens' forum as a central element of participation 	
4th Step sites	platform	 Centre of competent experts supports citizens' forum 	
5 th Step Decision on a site	 Control commit- tee verifies ad- herence to the rules of the pro- cedure 	 Round table of stakeholders Determination of willingness to participate in Steps 3, 4 by vote Preparation of regional development concepts Local council(s) take(s) final decision Orienting vote of the public and the local council(s) at the end of Step 5 	

Example AkEnd site selection process -

Socio-scientific criteria

AkEnd Socio-scientific requirements and relevant criteria

(AkEnd 2002)

Example AkEnd site selection process Limitation of participation

Willingness to participate

willingness to participate is an obligation of society to establish a repository

Criterion

- willingness to participate is decisive for the progress of the procedure
 - before starting surface-bound site investigations
 - before starting underground investigations
- the agreement to these investigations consists of a positive vote by the population and a positive vote by the local council(s)

Limitation of the consequences of missing willingness to participate

- when safety assessments of selected sites suggest the construction of a repository, the population will be asked as to how they will vote on the construction
- inquiry has orienting character and will help the German Bundestag to decide on the site to be chosen. In case of missing willingness - the safety related result of the selection procedure does not allow for a return to preceding steps

Résumé

regardig the relationship between technical and non-technical aspects (1)

Aggregating technical and non-technical aspects

- the aggregation of technical and non-technical partial results to an overall decision is methodologically difficult
 - there is **no overall "benefit value function"** allowing for simple, *e.g.* mathematical, aggregation of different technical and non-technical aspects
 - the "safety first" principle requires a clear priority of (safety related) technical aspects compared to non-technical aspects
 - the priority of safety **limits the procedural relevance of non-technical aspects** and determines the kind of aggregation
 - the procedural relevance of technical and non-technical aspects will change with the different phases of a decision making process

Résumé

regardig the relationship between technical and non-technical aspects (2)

"Safety first"

- procedure consequently directed to safety
- comparative evaluation of several options
 - inevitable from a geo-scientific and procedural point of view
 - societaly demanded (weighing)
- ⇒ technical objective: relatively best site

Fairness, equity

- no pre-determination (geographic, host-rock)
- participation of concerned people in the decision making process, assured by early participation of the public
- no inadequate burden through consequent orientation of the siting procedure to (long-term) safety
- ⇒ societal objective: relatively best site (as precondition of fairness)
- ⇒ societal / political acceptance
- ⇒ reduction of societal costs and controversies

References

- AKEND Arbeitskreis Auswahlverfahren Endlagerstandorte (2002): Site Selection Procedure for Repository Sites Recommendations of the AkEnd Committee on a Site Selection Procedure for Repository Sites
- EC (2010): Accompanying document to the revised proposal for a council directive (Euratom) on the management of Spent Fuel and Radioactive Waste. Impact Assessment.- SEC(2010) 1289 final, Brussels, 3.11.2010
- COWAM 2 Community Waste Management, Work Package 3 Quality of decision making process (2007): Decision-making processes in radioactive waste governance.- http://www.cowam.com/IMG/pdf_cowam2_WP3_v2.pdf